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A Three-Dimensional Linearized Unsteady Euler

Analysis for Turbomachinery Blade Rows

Summary

A three-dimensional, linearized, Euler analysis is being developed to provide an efficient

unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic

responses of axial-flow turbomachinery blading. The field equations and boundary condi-

tions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row

operating within a cylindrical annular duct are presented in this report. A numerical model

for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite

volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic

and numerical models have been implemented into a three-dimensional linearized unsteady

flow code, called LINFLUX. This code has been applied herein to selected, benchmark, un-

steady, subsonic flows to establish its accuracy and to demonstrate its current capabilities.

The unsteady flows considered, have been chosen to allow convenient comparisons between

the LINFLUX results and those of well-known, two dimensional, unsteady flow codes. The

detailed numerical results for a helical fan and a three-dimensional version of the 10th Stan-

dard Cascade indicate that important progress has been made towards the development of a

reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic

and aeroacoustic design studies.



1. Introduction

The development of analyses to predict unsteady flows in axial-flow turbomachines is

motivated primarily by the need to predict the aeroelastic (flutter and forced vibration) and

aeroacoustic (sound generation and propagation) characteristics of the blading. Accurate

and efficient aerodynamic analyses are needed to determine the unsteady loads that act on

the blades and the unsteady pressure responses that persist upstream and downstream of

the blade row, for various sources of excitation. These include structural (blade) motions

and aerodynamic disturbances at inlet and exit that carry energy towards the blade row.

The computational resources required to simulate nonlinear and viscous unsteady fluid dy-

namic behavior will continue to prohibit the use of such simulations in detailed, parametric,

aeroelastic or aeroacoustic design studies. Therefore, approximate, e.g., linearized invis-

cid, analyses are needed to provide efficient predictions of unsteady aerodynamic response

phenomena.

Until recently, the linearized analyses available for turbomachinery aeroelastic and aeroa-

coustic applications, have been based on two- and three-dimensional, classical methods, see

[Whi87, Nam87] for reviews. Such methods are very efficient, but are restricted to shock-free

flows through lightly-loaded blade rows. Because of these limitations, two-dimensional, un-

steady aerodynamic linearizations relative to nonuniform potential mean flows, as reviewed

in [Ver93], have been developed. Such analyses account for the effects of real blade geometry,

mean blade loading, and operation at transonic Mach numbers on unsteady aerodynamic

response. They have received considerable attention in recent years and are being applied in

aeroelastic and aeroacoustic design studies (e.g., see [Smi90, SS90, MM94]). However, more

comprehensive linearizations are still needed to predict three-dimensional unsteady flows in

which the effects of radial flow variations and mean swirl are important, and two- and three-

dimensional flows in which strong shocks occur. For such flows, the nonlinear Euler equations

are required to model the nonisentropic and rotational mean or steady background flow and

linearized versions of these equations are required to model the unsteady perturbations.

Thus, much attention is now being given to the development of two- [HC93a, HC93b,

KK93, MV95] and three-dimensional [HL93, HCL94] linearized Euler analyses. As in the

earlier linearizations with respect to potential mean flows, the linearized Euler equations

are developed in the frequency domain to address unsteady flows caused by temporally and

circumferentially periodic unsteady excitations. Thus, explicit, physical time-dependence is

removed from the resulting linear problem and the computational domain is limited to a

single extended blade passage region. Unlike the earlier linearizations, the linearized Euler

equations are solved over a deforming solution domain [HC93a, Gil93] so that troublesome

extrapolation terms that would appear in the blade surface conditions are replaced with

more tractable source terms in the linearized unsteady field equations. Also, because of

the large number of unknowns involved, the discretized linear unsteady equations are solved

iteratively, rather than by direct matrix inversion.

Under the present effort, we have proceeded with the development of a three-dimensional

linearized Euler analysis. This analysis is based on a linearized unsteady aerodynamic for-

mulation in the frequency domain, an implicit, flux-split, finite-volume, analysis for the

unsteady flow in the near field, and an eigenanalysis for the unsteady perturbations far up-

stream and far downstream of a blade row. These three-dimensional unsteady aerodynamic



and numerical modelshavebeenimplementedinto a computercode,called LINFLUX. The
LINFLUX analysis is describedin detail in the present report, and numerical predictions,
basedon this analysis,aregiven for three-dimensionalunsteadyflowsdriven by prescribed
blademotions and upstreamand downstreamtraveling acousticexcitations.

A two-dimensionalversionof the LINFLUX analysishasbeenreported in [MV95,VMK95],
wherenumericalresultsfor subsonicand transonicunsteadyflowsexcitedby prescribedblade
motions andexternal aerodynamicdisturbancesareprovidedandcomparedwith thoseof the
linearizedpotential analysis,LINFLO [Ver93]and the nonlinearEuler/Navier-Stokesanaly-
sis, NPHASE [HSR91,SLH+94, AV96]. Thesecomparisonsindicate that the 2D LINFLUX
analysisgives accurateunsteady aerodynamicresponseinformation for unsteady subsonic
flowsexcitedby bladevibrations andexternal aerodynamicexcitations, but improvementsin
the numericalmodeling at shocksand near bladesurfaces,arestill requiredfor the accurate
resolution of unsteadytransonic flowsand unsteadyflowsexcited by vortical gusts.

The main thrusts of the present effort havebeento develop,validate and demonstrate
a three-dimensionalversionof the LINFLUX analysis. A 3D numerical analysisand code
hasbeenconstructed, in which a near-field,implicit, finite-volume analysisfor the unsteady
perturbations of an arbitrary mean flow is coupled to a far-field eigenanalysisfor the un-
steadyperturbations of afully-developed,axisymmetric,meanflow, to predict unsteadyflows
through three-dimensionalbladerowsoperatingwithin annularducts. The near-fieldanalysis
is basedupon the high-resolution, wave-split,finite-volume schemedevelopedfor nonlinear
unsteadyflows by Whitfield, Janusand Simpson[WJS88]and implementedinto the turbo-
machineryunsteady flow analysis,TURBO, by Janus,Horstman and Whitfield [JHW92].
The flux or wavesplitting allowsa sharp resolutionof nonlinearshockphenomena-- a fea-
ture which should facilitate the accurateprediction of impulsive unsteadyshock loadswith
the linearizedanalysisin the future. The far-field analysis,which is coupledto the near-field,
finite-volume analysisat the computational inflow and outflow boundaries,allows incoming
external aerodynamicexcitations to be prescribed,and outgoing responsedisturbancesto
passthrough thesecomputational boundarieswithout reflection.

The 3D LINFLUX analysishasbeenappliedherein to predict relatively simpleunsteady
subsonicflows through three-dimensionalblade rows;namely,a helical fan and a real-blade
configuration, basedon the 10th Standard Cascade[FV93]. We haveconsideredunsteady
flows excited by blade vibrations and acousticexcitations at inlet and exit. For validation
purposes,we haveselectedhighly two-dimensionalunsteadyexcitations, i.e., blademotions
of constant amplitude and acoustic excitationswith zero radial nodes,and havecompared
the LINFLUX results with results determined using the two-dimensional, classical, linearized

analysis of Smith [Smi72], and the two-dimensional, full-potential based linearization, LIN-

FLO [Ver93]. Our predictions indicate that the current version of the 3D LINFLUX analysis

can provide accurate unsteady aerodynamic response information for these benchmark test

cases, but additional work is still needed to better understand mesh requirements, to en-

hance the computational efficiency of the LINFLUX analysis, and to extend its range of

application.



2. Unsteady Flow through a Blade Row

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid

non-heat conducting perfect gas through a rotating and vibrating blade row operating within

a stationary annular duct (see Figure 1). The duct is of infinite axial extent and has inner

and outer radii , r = rH and r = rD, respectively. The blade row consists of NB blades

which rotate about the duct axis at constant angular velocity _ = _e_. In the absence of

vibratory motion, the blades are assumed to be identical in shape, identical in orientation

relative to an axisymmetric inlet flow, and equally spaced around the rotor.

We will analyze this unsteady flow in a reference frame that rotates with the blade row,

in terms of cylindrical (r, 0, _, t) and Cartesian (xl, x2, x_,t) = (_, r sin 0, -r cos 0, t)

coordinates. Here _ and r measure distance along and radially outward from the duct axis,

respectively, and 0 measures angular distance in the direction opposite to the direction of

rotation, which is assumed to be counterclockwise when looking in the axial flow direction.

We will also have occasion to examine the flow in a stationary reference frame. Thus, when

necessary, we will use the superscript abs to indicate a physical quantity measured relative

to the stationary or absolute frame of reference; e.g., 0abs __ 0 + _t.

To describe flows in which the fluid domain deforms with time, it is useful to consider two

sets of independent variables, say (x, t) and (_, t). The position vector x(_, t) = :_ ÷ 7_(_, t)

describes the instantaneous location, in the rotating frame, of a moving field point, _ refers

to the reference or mean position of this point, and 7_(._, t) is the displacement of the point

from its reference position. The displacement field, 7_, is prescribed so that the solution

domain deforms with the vibratory motions of solid (i.e., blade) surfaces and is rigid far

from the blade row.

In the present discussion, all physical variables are dimensionless. Lengths are scaled

with respect to the reference length L*, time with respect to the ratio L*/V* where V* is

the reference flow speed, velocity with respect to V*, density with respect to a reference

density p*, pressure with respect to p*(V*) 2 and specific internal energy with respect to

(V*) 2. Here, the superscript • refers to a dimensional reference value of a flow variable.

To allow convenient comparisons between present 3D solutions and those of previous 2D

analyses, the reference length is taken here to be the blade chord at midspan; the reference

fluid density and flow speed, to be the inlet freestream density and relative flow speed at

blade midspan, respectively.

For aeroelastic and aeroacoustic applications, we are usually interested in a restricted

class of unsteady flows; those in which the unsteady fluctuations can be regarded as pertur-

bations of a background flow that is steady in the reference frame that rotates with the blade

row. Moreover, the steady background flows far upstream (say _ _ __) and far downstream

(_ >_ _+) from the blade row can be assumed to consist of at most a small steady pertur-

bation from a steady, fully-developed axisymmetric, swirling flow. The time-dependent or

unsteady fluctuations in these flows arise from temporally and circumferentially periodic un-

steady excitations of small-amplitude, i.e., prescribed vibratory blade motions and prescribed

aerodynamic disturbances at inlet and exit that carry energy towards the blade row.

For example, if the blades vibrate at reduced frequency, _, as seen by an observer in the

rotating frame, and at constant interblade phase angle, o., we can write

7_B,_(f, 0 + 2zcn/Ns,$,t)= T,_Re{RB(f,O,()exp[i(_t + no-)]}, i on B. (2.1)



Here, '_Bn is the displacement of a point on the nth moving blade surface from its mean

position in the rotating frame; Tn is a rotation matrix, which relates a vector in the reference

(n = 0) passage to its counterpart in the nth passage; n = 0, 1, 2,..., NB - 1 is a blade

index; Re{ } denotes the real part of { }; RB is the complex amplitude of the reference

(n = 0) blade displacement; and B refers to the mean position of the reference blade. The

interblade phase angle, a, is determined by the nodal diameter pattern of the vibratory

blade motion, i.e., a -- 21rND/NB, where IND[, the number of nodal diameters, is the integer

count of the number of times a disturbance pattern repeats around the wheel. The sign of

ND is determined by the direction of rotation of the disturbance pattern. If the vibratory

disturbance pattern moves in the direction of blade rotation, i.e., the negative 0-direction,

then No > O.

The unsteady disturbances in the far upstream and far downstream regions of the flow

are, in part, prescribed as a fluid dynamic excitation and, in part, depend upon the inter-

action between the fluid and the blading. Typically, an unsteady aerodynamic excitation

is represented by a linear combination of fundamental disturbances that are harmonic in

time, at temporal frequency w, and in the circumferential direction, at circumferential wave

number ND.

For example, if the underlying mean flow is uniform, the pressure associated with a

fundamental acoustic excitation is of the form

_A(r,O,_,t)=Re{aTpR'V(r)exp[xV_+i(rhO+_t)]}, _ <_ . (2.2)

Here, /SA(X, t) describes an incident pressure disturbance, i.e., a pressure disturbance that

travels towards the blade row from far upstream (_ < (_) or far downstream (_ >_ _+).

The quantities _, (n = No Jr rnNB = (a q- 27rm)Ns/21r, where m is an integer, and the

disturbance amplitude, a _:, are prescribed; the radial mode shape, pR,V (r), and the coefficient

)/:_ =/3 :F + i_;_:, where 13 is the axial attenuation coefficient and n_ is the axial wave number

of the pressure disturbance, are determined by the equations that govern the unsteady fluid

motion in the far field.

If equation (2.2) describes a pressure excitation as seen by an observer fixed in the rotating

frame, then the frequency of this excitation in the stationary frame is a; aDs = w- ND_, where

the rotation term, --ND_, accounts for the Doppler shift.



3. Unsteady Aerodynamic Formulations

The equations that govern the unsteady flows, described in §2, are given below. These

equations, which describe the flow seen by an observer fixed in the rotating frame, are based

on the conservation laws for mass, momentum and energy and the thermodynamic relations

for a perfect gas. The nonlinear equations in §3.1 describe the unsteady flow at the moving

field points x = :_ + 7_(:_, t) C )2, where 7_(:_, t) is a prescribed unsteady displacement field,

which depends upon the vibratory blade motion, i.e., 7_ = 7_s_ for :_ E B_, and V is a

moving control volume. The linear equations in §3.2 describe an unsteady perturbation,

driven by small-amplitude, circumferentially periodic, and temporally harmonic excitations,

of a nonlinear background flow that is steady in the rotating frame. In this case "R_ =

Re{R(:_) exp(iwt)}, where IR[ _ O(e) and w is the temporal frequency of the unsteady

motion, as seen by an observer in the rotating frame.

3.1 Nonlinear Unsteady Aerodynamic Equations

Consider an arbitrary moving control volume, r(t), which is bounded by the control

surface .A(x, t) = 0. The conservation laws for the fluid within V at time t, referenced to

a coordinate frame that rotates with the blade row at constant angular velocity F_, can be

written in column vector form as

_e
dt ; Udl/ + _[F_j - UT_xjln_,dA= ; SdV . (3.1)

Here, the symbol - indicates an unsteady flow quantity, "R. = (7_1, 7_x 2, 7_xa) is the velocity

of a field point embedded in the control surface ,4, n is a unit normal vector pointing outward

from this surface, and a summation over repeated indices is implied. The source term on

the right-hand-side of (3_1) accounts for the rotation of the reference coordinate frame.

The state, l_I, flux, Fxj,j = 1,2,3, and source term, S, vectors in equation (3.1) are

defined by

, F_ (U) =

Uj+I

Q+iU3/U_ + F_2j

+ Phi
Q+,(r2,+ p)/r.?,

, g(O,x) =

0

0

_2D_z2 + 2_U4
_2D_z3 - 2_t73

_'_2(_-T3Z 2 + U4x3)

(3.2)

where _, V, ET = /) + ?2/2 and/5 = (3'- 1)_/) = (7- 1)[(75 - 81-1(U_ + _2 + ug)/2] are

the time-dependent fluid density, relative velocity, relative specific total internal energy, and

pressure, respectively, and 5ii is the Kronecker delta. As a convenience, we have expressed the

flux vectors F_j as explicit functions of the state variables _, i = 1, 2..., 5, and the source

term vector S as an explicit function of the Ui and the spatial coordinates z_, i = 1,2, 3, but

these vectors could also be defined directly in terms of the primitive fluid dynamic variables

_, ?_j, j = 1,2,3, ET and/5.

Equation (3.1) applies in a reference frame that rotates at constant angular velocity

f_. Thus, the time derivative, d/dt, the Cartesian spatial coordinates, (Xl, x2, x3) and the

6



velocities"R. and V are measured relative to an observer fixed in this frame. However, if we

set 12 -- O, and replace the foregoing relative flow quantities by their absolute counterparts,

we recover an integral conservation equation that applies in the stationary or inertial frame

of reference.

Local Field Equations

After interchanging the order of time differentiation and volume integration in equation

(3.1), converting the surface integral to a volume integral, and taking the limit of the resulting

volume integrals as V(t) -+ 0, we arrive at a differential equation, i.e.,

OfJ/Ot x + OFx_/Ozj = S • (3.3)

that governs the inviscid fluid motion at the field points, x, within the fluid domain, at
which this motion is continuous and differentiable. In addition, if we choose a volume that

contains a surface at which the fluid variables are discontinuous, and take the limits of the

terms in (3.1) as this volume collapses into the surface of discontinuity, we determine jump

conditions, i.e.,

_Fxj-O_xj]nxj =0 for x•Wn or x•,Sh_, (3.4)

that apply at vortex-sheet wakes, YVn, and at shocks, Sh,,. Here [ ] denotes the jump in

a flow quantity across a surface of discontinuity and "R. is the surface velocity. In principle,

jump conditions should be imposed explicitly in fluid dynamic calculations, but the usual

procedure is to solve conservative forms of the governing equations, e.g., (3.1) or (3.3), over

the entire fluid domain and apply special discretization techniques in an attempt to "capture"

wake and shock phenomena.

Equations (3.1) and (3.3) apply over a fluid domain that rotates with the blade row

and vibrates with the blading. We will also require a field equation, expressed in terms of

cylindrical coordinates, i.e.,

I Opt _
0_[_cyl r 10rF'r r_ 10Fo + _ _ _ (3.5)

Ot +- Or + 0-"_- O_ '
X

that applies at fixed locations in the rotating frame, to determine approximate solutions for

the unsteady flows far upstream (_ < _-) and far downstream (_ > _+) from a blade row.

The state and source-term vectors in (3.5) are given by

_]" c yl = _.z e ,

0

([._:ay,)2/_, + t5
= r-1 frcyl_rcYl/frcYl

--v2 "_3 /v1

0

0

/+°/ 0 }2_j'_ yl -_- _'[Yl__T

-2U_ yl

0

(3.6)

and the flux vectors rr(_Jcyl), _'_ (CCyl) and F_(T_.Tcyl) and the pressure P_(lJcYl_) have the

same functional forms as those indicated, previously [cf. (3.2)] for F_ (U), F_ 2(U), F_3 (U)

and P(U).
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Boundary Conditions

The foregoing fluid-dynamic field equations must be supplemented by conditions on the

flow at the blade surfaces, the duct walls, and at the inflow (_ - __) and outflow (_ = _+)

boundaries of the computational domain. Flow tangency conditions, i.e.,

(_r _ "R) • n = 0 for x E Bn and V- n -----0 for r -_ rH, rD , (3.7)

apply at the moving blade surfaces and at the stationary duct walls, respectively. In addition,

temporally- and circumferentially-averaged values of the total pressure, the total temperature

and the inlet flow angle are specified as functions of radius at the inflow boundary, and the

circumferentially- and temporally-averaged pressure is specified at the outflow boundary,

consistent with radial equilibrium. The unsteady fluctuations at inlet and exit that carry

energy towards the blade row must also be specified; those that carry energy away from the

blade row must be determined as part of the unsteady solution.

3.2 Linearized Unsteady Aerodynamic Model

We proceed to develop the linearized aerodynamic equations for unsteady flows, that

occur at a single temporal frequency, w, relative to an observer fixed in the rotating frame.

The unsteady excitations are assumed to be of small amplitude (e.g., ]7_-B_I "" O(c) << 1);

hence, the unsteady part of the inviscid flow can be approximated as a first-order (in e)

perturbation of an underlying nonlinear background flow that is steady in the rotating frame

of reference.

The linearized model offers several computational advantages. First, since the unsteady

excitations are harmonic in time, the first-order unsteady flow properties will have harmonic

time-dependence. Thus, physical time dependence can be removed from the linearized un-

steady boundary value problem. Second, as a consequence of our assumptions regarding

rotor geometry, inlet and exit mean-flow conditions, and the temporal and circumferential

behaviors of the unsteady excitations, the steady background flow will be periodic from

blade-to-blade, and the first-order unsteady flow will exhibit a phase-lagged, blade-to-blade

periodicity. Such conditions allow numerical resolutions of the steady and linearized unsteady

flows to be limited to a single, extended, blade-passage region, i.e., a region of angular pitch

£xO = 27r/Ns. Finally, since the steady background flow far from the blade row is at most a

small perturbation from an axisymmetric swirling flow, unsteady far-field solutions can be

constructed and matched to a numerical near-field solution to further reduce the computa-

tional domain to one of finite extent in the axial-fiow direction.

Series Expansions

To determine the linearized unsteady aerodynamic equations, we first expand the un-

steady state vector, l_l, into an asymptotic series of the form [HC93a, Gil93]

O[x(Yc, t),t]=U(Yc)+fi[x(_c,t),t]+ .... U(Yc)+Re{u(Yc)exp(icvt)}+... , (3.8)

where the column vectors U(_) _ O(1) and fi[x(2, t), t] .-_ O(e) contain the conservation

variables for the steady background flow at 2 and the first-order unsteady flow at x =



+ 7£(_, t), respectively, and the dots refer to higher order terms. The components of the

vector u are the complex amplitudes of the first-order unsteady conservation variables, i.e.,

u T = [p, pv=, + pV=x , Pv=2 + pV=2 , Pv=3 + PV=3 , peT + pET] (3.9)

where p, V and ET and p, v, and eT are the steady and the complex amplitudes of the

first-order unsteady, primitive flow variables, respectively.

The unsteady flux F=_ and source term, S, vectors can be approximated using Taylor

series expansions about the mean flow state, U, and the reference spatial location, .% i.e.,

OF=_ - - OS S
_'_j(l[I) = F_j(U)+-_-fi+ ... and S(U,x) = S(U,:_)+_-_fi+(7_-V_) + .... (3.10)

Here, 0F,j/0U = {OF_,zj/OUk} and 0S/0U = {OSjOUk} are Jacobian matrices and the

subscripts i and k refer to the ith row and kth column, respectively, of these matrices.

We have expressed the nonlinear fluid dynamic equations (3.1) and (3.3) in terms of

the moving control volume, l;, which is bounded by the surface `4, and the moving spatial

coordinate x, respectively. However, because of dependent variable expansions of the form

(3.8), the corresponding steady and linearized unsteady equations are more conveniently

expressed in terms of the corresponding fixed quantities I5", A and _, which describe the

mean or steady-state positions of V, .4 and -2,, respectively. To within first-order in c, the

required spatial transformation relations are

d]2 = [1 + OI_/O_m exp(iwt)]dV +... , rid.4 = fidft + A(fidA) exp(iwt) +... ,

and

0/Oxj = 0/OYQ - (OR_m/O_2j)exp(ia_t)0 /02m +...
(3.11)

where fi is the unit outward normal vector to the control surface .zl, and A(fidA) is the

complex amplitude of the first-harmonic component of rid.4 - fidA. Also, to within first

order in e, the local time derivative 0/0t[x transforms according to

0/Ot[x = 0/Ot[_- iwR_._ exp(iwt)O /02m + .... (3.12)

The Steady and Linearized Unsteady Equations

The equations that govern the zeroth-order steady and the first-order unsteady flows

are obtained by substituting the series expansions (3.8), (3.10), (3.11) and (3.12) into the

nonlinear governing equations; equating terms of like power in e; and neglecting terms of

second and higher order in e. This procedure leads to nonlinear and linear variable-coefficient

equations, respectively, for the zeroth- and first-order flows. The variable coefficients that

appear in the linearized equations depend upon the underlying steady background flow.

The conservation equation for the steady background flow is

j Fjn_dA = j Sd? or OF,:_/OYcj = S. (3.13)

In addition, the flow tangency condition,

V.n=0, for Yc E B_ , r = r H and r = r D (3.14)
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applies at the reference blade surfaces and at the duct walls, and periodic conditions on the

steady flow variables; e.g.,

p(_,_+2_cn/NB,_)=p(_,O,_) and V(_,_+2_rn/Ns,_)=TnV(_,O,_) (3.15)

apply upstream and downstream of the blade row. Finally, circumferentially averaged values

of the appropriate steady flow variables are specified as functions of radius at the inflow and

outflow boundaries and circumferential harmonics of these variables are allowed to evolve to

values that are consistent with a blade row operating within an infinite annular duct.

The conservation equation that governs the first-harmonic unsteady perturbation can be

written as

i_/_ udV

io3u

or

(3.16a)

0 [0F_j _ 0S =-i_U+ (-xv-u)-

+ _ iwR_jU+ O_.m _ O_m Fz_
+

(3.16b)

respectively, where the terms on the right-hand side, which depend explicitly on the dis-

placement field R, are regarded as known source terms.

The linearized flow tangency condition,

v. fi -- i_R. fi + V. _'(R. fi), for _ e Bn, r = rH and r = r v , (3.17)

applies at the blade surfaces and at the duct walls, and phase-lagged periodicity conditions,

e.g.,

p(_,_+2_rn/Ns ,_)= p(_,_,_) and v(_,_+2rn/N,_)= W_v(_,_,_)exp(ina), (3.18)

apply upstream and downstream of the blade row. The far-field conditions imposed in

the unsteady problem must allow for the prescription of external unsteady aerodynamic

excitations and permit unsteady disturbances coming from within the solution domain to

pass through the computational inlet (at _ = __) and exit (at _ = _+) boundaries without

reflection.

In addition to the differential equations in (3.13) and (3.16), we also require field equations

that will allow us to develop approximate analytical representations for the steady and

unsteady flows far upstream (_ < __) and far downstream (_ > _+) of a blade row. In

particular, we will require equations, expressed in cylindrical coordinates, that describe the

steady background flow and the first-order unsteady perturbation at fixed points, x = _,

in the rotating frame. After transforming the differential equations in (3.13) and (3.16) to
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cylindrical coordinates, or, alternatively, after applying the series expansions (3.8) and (3.10)

to the nonlinear, time-dependent equation (3.5), and setting R -- 0, we find that

and

ia;u + r -z 0(rAu) r- 1 0Bu OCu
Or + 0"---_-+ O_ Du = 0. (3.20)

Here, A = 0Fr /0U cyl, B = 0Fe /c3U cyl and C = 0F_ /0U cyl are flux Jacobian matrices

and D = c_Sr/0U Cyl is the source-term Jacobian.

Solution Strategy

We require solutions to the nonlinear steady and the linearized unsteady boundary-value

problems to predict the unsteady aerodynamic responses of a blade row operating within

an annular duct, to various types of unsteady excitation. In the present study, we will

employ the nonlinear analysis, TURBO [JHW92], to provide the steady background flow

information, required for a linearized unsteady aerodynamic analysis; and seek solutions to

the linearized unsteady problem by matching a wave-split, finite-volume analysis for the

unsteady perturbation in the near field, i.e., in the region __ _ _ _ _+, to approximate

solutions for the unsteady perturbations of fully-developed, axisymmetric, mean flows in the

regions far upstream (( _< __) and far downstream (_ >_ _+) of the blade row. Thus, we will

solve the integral form (3.16b) of the linearized unsteady field equation in the near field, and

a reduced form of the differential equation (3.20) in the far-field.

In the near-field, finite-volume analysis, it is advantageous to regard the state vector u as

pseudo time dependent, i.e., to set u = u(:_, _-), where _"is the pseudo time variable, and add

the term O(f c udV)/07- to the left-hand side of equation (3.16b). This allows conventional

time-marching algorithms to be used to converge the solution for the complex amplitude of

the unsteady state vector to a steady-state value.

Also, the complex-amplitude of the displacement field, R(_), must be prescribed over

the entire solution domain. In the present study, this field is defined so that the solution

domain deforms with the blade motion (i.e., R(_) = RB,(_) for _ • Bn), slides along

the hub and duct walls (R(_). e_ = 0 for f = rH, tO), and remains rigid far from the

blade row (R(_) - 0 for _ < _:). In addition, R(_) is prescribed along one blade-to-blade

periodic boundary, such that it is continuous at the blade leading and trailing edges and

decays exponentially away from the blade row. At the other boundary, R is set so as to

satisfy phase-lagged periodicity, cf. (3.15). The function R(._) is determined, first, along the

hub and duct walls, and then, in the interior of the computational domain as solutions of

Laplace's equation, V2_R = 0, subject to the appropriate Dirichlet boundary conditions_

given above. Note that for unsteady flows in which no blades vibrations occur, we simply

set R _-- 0.

The linearized far-field analysis is described in §4 of this report; the near-field, finite-

volume analysis, in §5. These have been coupled and implemented into the LINFLUX code,

which is demonstrated via the numerical results in presented §6.

11



4. Unsteady Perturbations in the Far-Field

Analytical descriptions of the linearized unsteady flows in the regions far upstream (_ <

__) and far downstream (_ > _+) from a blade row can be applied to restrict the near-field

computational domain to one of finite extent in the axial-flow direction. Such decriptions are

based on reduced sets of governing equations. They allow unsteady disturbances that enter

the computational domain (excitations) to be prescribed as approximate solutions to the

linearized governing equations and render the computational inflow and outflow boundaries

transparent to outgoing waves.

This approach has been applied successfully in two-dimensional unsteady flow calcula-

tions [Ver89b], wherein exact solutions for the linear unsteady perturbations of uniform mean

flows are matched to numerical near-field solutions at the computational inflow (_ = __) and

outflow (_ = _+) boundaries. Unfortunately, exact solutions for three-dimensional unsteady

disturbances are only available for the special case of a uniform, absolute, steady-background

flow. Thus, at present, approximate far-field conditions must be applied in computational

simulations of more general three-dimensional flows. For example, analytic two-dimensional

solutions have been applied in radial strips [SG91]. This quasi three-dimensional approach

can be useful for blade flutter applications, and it is easy to implement. However, since the

true radial behaviors of the unsteady disturbances are not taken into account, realistic three-

dimensional, unsteady aerodynamic excitations cannot be prescribed, and the mismatches

that exist between the near- and far-field solutions can cause nonphysical or spurious reflec-

tions of outgoing disturbances.

The approach taken here is a similar, but expanded, version of that adopted in [HLC93].

In particular, we propose approximate representations for the three-dimensional unsteady

perturbations of a fully-developed, axisymmetric, swirling, mean flow. These representations

describe the behaviors of the convected and the modal or wave-type unsteady disturbances

that exist far upstream and far downstream of a blade row operating within a cylindrical

annular duct. The fundamental unsteady disturbances are assumed to vary harmonically in

time and in the circumferential direction and exponentially in the axial direction. The axial

exponential coefficients and the radial distributions of the modal disturbances are determined

by solving a far-field eigenvalue problem numerically. The resulting far-field solutions are

then used to prescribe incoming unsteady aerodynamic excitations and, by matching the

analytic far-field solutions to a numerical near-field solution, to determine the amplitudes of

the outgoing waves.

We assume that, far from the blade row, the mean or steady flow quantities are dependent

only on radial position, i.e., p = _3(r), P = P(r), etc., and that the radial component of the

steady velocity is negligible, i.e.,

V _ Vo(r)eo+ V_(r)ee. (4.1)

Under these conditions, the steady field equation (3.19) reduces to

__, dP = r_lV: + 2_Vo + n_, " • (4.2)
dr

Equation (4.2) must be satisfied to ensure that radial momentum is conserved in the steady

background flow. We also assume that the velocity and the thermodynamic information
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neededto completely determine the steady background flow in the far field are known.
Equation (4.2) can then be combined with the appropriate thermodynamic relations to
determine the remaining mean-flowthermodynamic properties. For example, if the mean
flow is isentropic,and the steadypressureand density arespecifiedat somereferenceradial
station, say at r = rref, we can combine (4.2) with the thermodynamic relations p/5-_ =

(Pfi-_)rd and E = (7 - 1)-IPP -1 to obtain

_rr "y-1 dE(pp-7)_/7 dP(7-1)/7 _ _7 (pp-7) = :- r-lV_ + 2_Ve ÷ _2r (4.3)
7 1 dr 7 1 7-_r "

Similar, but slightly more complicated relationships, hold for non-isentropic mean flows.

For the mean flow conditions just described, the linearized unsteady equation (3.20) can

be reduced to

iwu + r -lO(rA2u) -1- 0u C 0u
Or +r B2_+ 2_--Du=0, (4.4)

where the subscript 2 on the Jacobian matrices in (4.4) indicates that they are evaluated at

U_yl = O, e.g., A2 = OFr/OUcyl]u_yl=o.

4.1 Uniform Mean Flow

For the special case of a uniform mean flow in the absolute frame, i.e._ V abs = v_bse_,

where V_abs and the mean-flow thermodynamic properties are constant, an exact solution

can be determined for the first-order unsteady perturbation. In particular, the linearized

unsteady equations (4.4) can be recast as a system of uncoupled equations [VMK95] for the

first-order unsteady entropy, g, vorticity, _ = V × f, and pressure, fi, of the form

D_ D____
D---t - 0, Dt + l_ × _ = 0 , and b_---_fiDt2 - A2V215 = 0 , (4.5)

where D �Dr -- 0 �Or ÷ V_ /cO( + Ver-lO/08 is a convective derivative operator based on

the relative mean-flow velocity, i.e., V = V abs - 12 × r, so that V_ = V_ bs and Ve = -f_r.

Equations (4.5) indicate that the first-order entropic, vortical and pressure perturbations

of a uniform absolute mean flow are independent modes of unsteady fluid motion. Moreover,

the entropic and vortical disturbances are convected at the mean flow velocity and therefore,

have general solutions of the form

= _(r, r8 - Vet,_ - V_t) and _ = _(r, rS- Vot,( - V_t) . (4.6)

Finally, the pressure disturbance is governed by a convected wave equation which can also

be solved analytically.

For an unsteady flow occurring at temporal frequency w in the rotating frame, the un-

steady entropic and vortical perturbations can be represented as a superposition of harmonic

disturbances of the form

OG

s(r,O,_) = _ sm(r)exp[i(_,m_ + rhO)] , (4.7)
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and

_(r, 0,_) = _ _m(r)exp[i(_,m_+r_0)]. (4.8)
m=--oo

Here s and ff are the complex amplitudes of the unsteady entropic and vortical fluctuations,

sm (r) and ffm(r) describe the radial behaviors of the fluctuations in the rath circumferential

mode, rh = ND + runs is a circumferential angular wave number which represents the

number of complete cycles or "lobes" in the ruth convected disturbance over the interval

0 < _9 < 27r, and _,m is the axial wave number of the ruth disturbance. The temporal

frequency of an ruth convected disturbance as seen by an observer fixed in the absolute

frame is given by _m'abs= W --rhf_x, and it follows from the convection equations in (4.5) that

/_,rn --(W -- T_2_'2x)W_ -1 .abslr-1

A solution for the first-order unsteady pressure disturbance can be determined by solv-

ing the convected wave equation in (4.5), using the method of separation of variables

[TS62, VTM82]. The resulting solution for the complex-amplitude of the unsteady pres-

sure perturbation is

Here a _: Qm_, and km_ are constants, J_ and Y,_ are Bessel functions, of order rh, of therobe,

first and second kinds, respectively, and the acoustic modes are ordered so that the index

# = 0, 1,2, ... indicates the number of zero crossings or radial nodes in the #th radial

mode. The constants, kin, and Qm_,, in (4.9) are determined by the boundary conditions at

the duct walls, e.g., see (3.17), and

X'rn# = #re+p, + _g_mp, = (1 -- M_) -1 [iM_oj_nbs/A :717. [(1 - 2_/I_)k2p - (_J_S/A)2]l/2 ] , (4.10)

where M¢ = VUA < 1 and A are the axial Mach number and speed of sound propagation

in the steady background flow, respectively, and .abs_m = _' -- r_f2 is the absolute frequency of

the unsteady pressure disturbances in the mth circumferential mode.

The - and + superscripts in the foregoing equations indicate that there are two com-

ponents of the m#th pressure pattern. If tz m'abs/a/_ > (1 -- M_)l/2km_, then the X_ are

purely imaginary, and the two components describe propagating acoustic disturbances. If

_/_abs (1 M_)km_,, then X_, are complex, and one component decays, whereas the/_m < --

other grows exponentially with increasing distance along the duct. The appropriate sign, -

or +, to be used is determined by the conditions imposed on the m#th acoustic disturbance.

The minus sign describes an acoustic wave that propagates downstream or attenuates with

increasing distance downstream; the plus sign, a wave that propagates upstream or atten-

uates with increasing distance upstream. Thus, for example, for subsonic (M_ < 1) axial

mean flow, the minus sign must be selected to describe an acoustic excitation coming from

upstream of a blade row; the plus sign, to describe an acoustic excitation coming from

downstream.
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4.2 Mean Flows with Swirl and Axial Shear

For nonuniform mean flows in which the fluid absolute velocity and thermodynamic

properties vary with radius, it is not possible to determine exact solutions for the first-order

unsteady flow variables. However, guided by the solutions determined for uniform mean

flows, we can presuppose approximate solutions to (4.4), for the unsteady perturbations

associated with a blade row operating within a cylindrical annular duct. In particular, we

set fi -- tic + fiw, where tic describes a purely convected disturbance field, and has a general

solution of the form

=  c(T, ro- vet, - y t), (4.11)

and 6w describes convected-wave or modal type disturbances, and has a solution of the form

(4.12)

where u_,_(r) defines the radial shape of the mnth mode.
The convected disturbances are solutions of the unsteady equation (4.4) that satisfy the

condition, Dfic/Dt - 0. As a result, the complex amplitude uc of the state vector, tic, has

the form

Uc = _ Um,c(r)exp{i[_e,m,c(r)_ + rh0]} . (4.13)

In general, the axial wave number of the mth convected disturbance, e;e,m,cy, depends on

radius, and is given by

_,m,c(r) - -[w + _r-lVe(r)]/V_(r) = -[w_ bs + rhr-lV_bS(r)]/V_(r) , (4.14)

where .abs = W -- m_'_ and Vaabs = Va + _r. Because of this radial dependency, the solution
O-; m

for the convected disturbances cannot be represented via a modal analysis. It should also be

noted that the axial wave numbers of the convected disturbances are independent of radius

for the special cases of uniform axial velocity and either solid body swirl (Va oc r) or no swirl.

The wave-type or modal disturbances in (4.12) must be determined as solutions of equa-

tion (4.4), subject to the appropriate boundary conditions at the duct walls, e.g., see (3.17).

After substituting the modal form of the solution, assumed in (4.12), into these equations,

we find that

riO( R)R - rA2 umn um,_ + Xm,_C2 um,_ - D2 um,_ = 0 .iwI Umn + _r + irhr-lB2 R R R
(4.15)

The system of equations (4.15) provides an eigenvalue problem for determining the eigen-

values Xmn, and the corresponding right eigenvectors Um,_Rof the far-field, convected-wave

type, unsteady disturbances. The exact solutions to (4.15) for uniform mean flows indicate

that the wave-type solutions are associated with irrotational unsteady pressure perturba-

tions. For mean flows with swirl and/or axial shear, numerical solutions to (4.15) indicate

the existence of a more complicated array of modal or wave-type disturbances.
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Numerical Eigensolutions

After discretizing (4.15), by replacing the radial derivative operator by a finite-difference

operator and introducing an artificial dissipation term, we find that

(P xm.C2) R-- Umn = 0 (4.16)

where

P = -iwI - L(r, A2) - irhr -1 B2 + D2 + e454I. (4.17)

Here, the column vector u,,,_R contains an entry for each of the five conservation vari-

ables at each radial discretization point, L(r, A2) is a finite difference approximation to

r-lO(rA2uRn)/Or , and e454 is a dissipation term, which has been included to suppress odd-

even decoupling. The dissipation term is based on fourth-order radial differencing and the

coefficient e4 is used to control the amount of added dissipation.

The complex, non-Hermetian, generalized eigenvalue problem (4.16) can be solved, us-

ing a standard linear algebra routine, to determine the axial eigenvalues, Xmn, and the

associated right eigenvectors, u_(r), that describe the modal unsteady perturbations in

the far field. The left eigenvectors, LU,m , are determined as a solution to the equation

(p H *-- xmnC) um_ = O, where the superscript H indicates the conjugate transpose of a

complex matrix. An orthonormal set of left eigenvectors can then be determined by setting

(vi). L H L HCuR ] so that (vLp, R L H R= (Um_) C/[(um_) mnj, Umq} = (Vmp) Umq = 5pq, where 5pq = 1

ifp = q and 5pq = 0 ifp-_ q.

Once the eigenvalues and the eigenvectors of (4.15) have been computed, the constants,

am_, in equation (4.12) can be determined from the complex amplitude, Uw, of the su-

perposed wave-type disturbances. After taking the inner product and making use of the

orthogonality relations for the left and right eigenvectors, we find that

OO

L
(vm,_,uw} = _ amnexp(xm_ + irhO) (4.18)

?'g$---- -- (2_

Then, after multiplying both sides of (4.18) by exp(-xmn(- irh0), and integrating the result

with respect to 0 over the angular pitch, 2_/NB, of the blading, we obtain the following

expression for amn:

L NB fO+2"dNBuwexp[_(Xm,_ _ + i_O)]dO).
amn = <Vmn, 27V ,10 (4.19)

The group velocity, Vg,,:_ , of an unattenuated mnth disturbance, i.e., the velocity at

which such a disturbance carries energy, can be determined by differentiating (4.16) with

respect to w and taking inner products between L H(Vmn) and the terms in the resulting

equation. After carrying out the algebra, we find that

_Cd L Cu2 >
V - - (4.20)

vL

The group velocity can be used to determine the propagation directions of the acoustic
disturbance modes.
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Classification of Unsteady Disturbances

Unsteady perturbations of uniform mean flows can be represented by a superposition

of purely entropic and purely vortical disturbances that are convected by the mean flow,

and upstream- and downstream traveling irrotational pressure disturbances. However, for

nonuniform mean flows, the situation is more complicated [Kou95]. In particular, for the

rotational, but isentropic, mean flows being considered herein, the unsteady entropy is an

independent disturbance that is convected by the mean flow, but neither convected purely

vortical nor propagating or attenuating purely irrotational acoustic disturbances exist, be-

cause of the coupling between vortical and acoustic disturbances caused by mean-flow vor-

ticity. Instead, downstream traveling, nearly-convected, vorticity-dominated disturbances

and upstream and downstream traveling, pressure-dominated disturbances occur [GA96].

The nearly-convected disturbances are primarily vortical, but also contain pressure fluctua-

tions. They travel downstream, without attenuation, at speeds slightly less than and slightly

greater than the mean flow speed. The propagating or decaying acoustic disturbances also

carry unsteady vorticity. Both of these types of disturbances appear as solutions of the

eigenvalue problem (4.15).

Thus, we can further decompose the solution for the unsteady state variables by setting

= uc(r,e, ) + uA(r, + u (r, e, (4.21)

where Uw = UA -}- UN and uc, UA and u N are the complex amplitudes of the convected,

the acoustic and the nearly-convected unsteady disturbances, respectively. The complex

amplitude of the state vector for the convected disturbances is described by (4.13).

If we order the acoustic disturbances in (4.21) according to the number of zero crossings

or nodes of the radial eigenmode, denoted by the subscript # = 0, 1, 2, ..., the state vector,

UA, can be expressed as

oo (2<)

UA(r, 0,_) = E _'- a_m_,,AU_A(r)exp(x_,n _ + i_8), (4.22)
m=--oo it=0

where the - and + superscripts correspond to the downstream and upstream traveling

acoustic disturbances. For subsonic relative flows, [V 1 < A, the behaviors of the acoustic

waves change, with increasing # and/or ]ml, from propagating (if any propagating waves

exist for the given frequency and number of nodal diameters) to decaying. This implies

that the series in (4.22) can be truncated at a finite distance from the blade row, since the

high # or [rh[ acoustic response disturbances will have decayed to negligible levels. This is

fortuitous, because only a finite number of disturbance modes can be accurately represented

in numerical descriptions of the unsteady perturbations in the far upstream and downstream

regions.

As in uniform mean flows, the eigenvalues, )/_, of the m#th acoustic disturbances are

composed of an attenuation coefficient and an axial wave number, i.e., X_ = _3_ _ i_,m_.

The m#th acoustic waves propagate, if the X_m_ are purely imaginary; otherwise, these waves

grow and decay exponentially in the downstream axial direction. For uniform mean flows

the decaying pressure waves occur in pairs at _:_,m_ = _,mt_,cutoff = M_wabs/Am/ [see (4.10)],

where a_,m,,cuto_ is the axial wave number at which cutoff occurs; i.e., the wave number at
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which the acousticbehaviorchangesfrom propagatingto attenuating. For nonuniform mean
flows, the decayingpressurewavesalsooccur in pairs, but not at constant valuesof _.

The nearly-convected,vorticity-dominated disturbancescanalsobe orderedby the num-
ber of zerocrossingsin the eigenmode,but in this casestarting with # = 1. Thus, the state
vector, u_v,can beexpressedas

oo oo

uN(r,0, ) E E= amu,gUmu,N(r) exp[i(a_,mu,N__: + rh0)] . (4.23)
rr_=-- oo _=1

The eigenvalues of the m#th nearly-convected disturbances are imaginary, i.e., X_,. = ia_,m,
and the - and + superscripts in (4.23) correspond to axial wave numbers that are less than

and greater than, respectively, the axial wave numbers of the ruth convected disturbance,

i.e.,

- + (4.24)_;_,,n_,lv < _,m,c(r) < _,m_,N "

Note that, since the nearly convected waves do not attenuate, it may not be possible to

truncate the series (4.23) without introducing error.

Filtering of Unwanted Radial Modes

The numerical solution of equation (4.15) will yield a radial mode for each of the five

conservation variables and each radial grid point. For example, if the radial grid used to

discretize equation (4.15) consists of 20 points, 100 radial modes will be obtained. Some of

these numerically determined modes describe acoustic waves, some describe nearly-convected

waves (if the mean flow is nonuniform), some are discrete representations of convected dis-

turbances, and many are spurious solutions which satisfy the discretized equation but not

the differential equation. The spurious modes must be filtered out to yield a valid solution

set. Typically eight radial modes will be kept to represent acoustic disturbances. These

are the upstream and downstream traveling acoustic modes with less than four radial zero

crossings. Thus, if no nearly-convected modes exist, over 90% of the numerically determined

radial modes are filtered out.

In the present effort, the filtering is based on the number of radial zero crossings, or

nodes, and the point-to-point oscillations of each computed radial mode. To prevent aliasing

errors, the number of zero crossings, Nz, in a radial mode is limited; e.g., we set Nz <_

(to -- rH) / (4/krmax), where rD and rH are the duct and hub radii, respectively, and /krmax

is the maximum spacing in the radial grid. To further eliminate the spurious oscillatory

modes that arise from the discretization, the number of crossings about the mean value of

the radial mode is also limited in a similar fashion. These filtering criteria have been found to

usually yield only the genuine modes, but the filtering algorithm is still under development.

Since only a finite number of modes are retained after the filtering process, the far

field modal description may be incomplete. This caveat applies to both the number of

circumferential and radial modes. The number of circumferential modes required for acoustic

disturbances is determined by the number of cut-on modes. For subsonic tip relative Mach

numbers, typically only a few, if any, acoustic modes are cut-on, but for supersonic tip Mach

numbers an infinite number of acoustic modes may be cut-on. For frequencies typical of

blade flutter, usually only the radial modes having zero crossing are required. For frequencies
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typical of blade row interactions, usually only radial modes with less than four nodes are

required. The number of radial modes required for nearly-convected waves is unknown at

this time.

Since the acoustic and nearly-convected modes are ordered by the number of radial nodes,

the number of nodes in each kept numerical mode can be counted to determine if any genuine

modes are missing or if spurious modes are being kept. If the number of kept modes with a

given number of nodes is one, or two for the nearly convected modes, then it is likely that

only the genuine modes have been retained. Based on our numerical results, the exclusion

of genuine modes or the inclusion of spurious modes is detrimental to both the accuracy and

convergence properties of the LINFLUX analysis.

4.3 Near-Field/Far-Field Matching Procedure

To couple the foregoing far field solutions to a near-field numerical solution for the lin-

earized unsteady flow, the incoming unsteady aerodynamic disturbances (excitations) must

be prescribed, and the outgoing disturbances must be determined by matching the far-field

descriptions (4.12) and (4.13) to the near-field solution. In particular, the convected entropy

and vorticity fields, the nearly-convected vortical waves, and the propagating and attenuat-

ing acoustic waves that travel downstream are incoming disturbances at the inflow boundary

(_ -- __) of the near-field computational domain and outgoing disturbances at the outflow

(_ = _+) boundary. Acoustic waves that travel upstream are incoming disturbances at _ = _+

and outgoing disturbances at _ = __.

To determine the amplitudes, arnu,A=7 and arnt_,N=7,of the outgoing wave-type disturbances,

inner products of the left eigenvectors of the system (4.16) with the near-field solution for

the state vector, u are taken, under the assumption that L L(Vm, , U) _ (Vm_, UW). For each

outgoing disturbance mode, the amplitude in the ruth circumferential and #th radial mode

is determined by applying (4.19) at the computational inflow and outflow boundaries, with

Uw replaced by the near-field solution for u at the computational boundary. Thus, the

amplitude, am,=7, is determined by

a_u = (vm_,,L Ns27r.10fe+2_/n8 u(r, 0, _=7)exp[-(X_=7 + ifnO)]dO) . 4.25)

The wave-type modes are then sorted into acoustic and nearly-convected modes and super-

posed to provide solutions for Uw in the far-upstream and far-downstream regions of the

flow, i.e.,

M N

=7 R,=7 ¢r_ exp(X_mu,A_ + iv?tO)Z Z am.,AUm.,A,,
rn=- M tt=O

(4.26)

u (r, 0,¢) =

M N

+ E E=7 R,=7am#,NUmu,Y(r) exp[i(k_,m,,y_ + _0) l , _ < _=7
m=-M tt=l

where M and N are the finite numbers of circumferential and radial modes, respectively: that

can be represented accurately on the computational grid used to determine the near-field

solution.
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Once the wave-type far-field disturbancesare determined, they are combinedwith any
convecteddisturbance to obtain the completefar-field disturbance. At the upstream far-
field boundary, the complex amplitude of the convecteddisturbance is set to describeany
incident convectedgust. At the downstreamfar-field boundary, the complexamplitude of
the convecteddisturbanceis set to be the differencebetweenthe total unsteadydisturbance
and the sum of the wave-typedisturbances.

Thus, at the downstreamboundary, the acousticand nearly-convectedunsteadydistur-
bancesin (4.26)aresubtracted from the total unsteadydisturbance,u, and the remainder,
uc(r, t_, _+) -- u(r, 8, _+) - uw(r, 8, _+), is regarded as a convected disturbance. This has the

effect of lumping all of the convected disturbances together, and relies on having a complete,

orthogonal basis set for the wave-type disturbances. Thus, any error in the representions

of the wave-type disturbances will appear in the assumed convected modes. The convected

disturbance in the far-downstream region is computed by the method of characteristics as a

solution of the equation Dfic/Dt - O. Because the mean radial velocity is assumed to be neg-

ligible, mean streamlines will lie along constant radius surfaces. Along one of these constant

radius streamlines, rOV_ - Vo_ = constant, and the functional form of the far-downstream

convected field is uc(r, 8, _) = uc(r, 8, _+) exp [-iw (_ - _+)/V¢].

In the near field, the linearized unsteady governing equations are solved using the iterative

technique described in the next section of this report. After each iterative update of the

near-field solution, the amplitudes of the wave-type modes, i.e., amt_,A_ and am#,g_, and the

far-downstream convected disturbance, Uc(r,O,_+), are updated. The far-field solutions,

which are the sums of wave-type and convected disturbances, are then updated, and these

values are used to supply the far-field boundary information needed for the next near-field

update.
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5. Numerical Model for the Linearized Unsteady Equations

The field equations that govern the nonlinear steady and the first-harmonic, linearized,

unsteady flows through a vibrating blade row rotating at constant angular velocity f_ have

been given, as equations (3.13) and (3.16), respectively. The unsteady equation has been

written in a conservation form in which the terms that depend explicitly on the blade mo-

tion, i.e., on R, are regarded as known source terms. As described previously, the steady

and linearized unsteady field equations must be solved, in sequence, each subject to appro-

priate boundary conditions at the blade surfaces, the duct walls, the blade-to-blade periodic

boundaries, and at the inflow and outflow boundaries of the computational domain.

We proceed to describe the numerical procedures developed to resolve the linearized,

first-harmonic, unsteady flow. These procedures are based on those used in the nonlinear

unsteady analysis, TURBO, and have been implemented into the LINFLUX unsteady flow

code. TURBO is an implicit, flux-split, cell-centered, finite-volume analysis that can be used

to predict three-dimensional, nonlinear, inviscid and viscous, steady and unsteady flows. A

detailed description of this analysis can be found in [JHW92]. Also, an excellent description

of the basic numerical methods underlying TURBO and a two-dimensional counterpart,

called NPHASE, can be found in [SLH+94].

In addition to serving as a basis for the development of the LINFLUX code, the TURBO

analysis is used in the present study to provide the steady background flow information

needed for a linearized, inviscid, unsteady aerodynamic analysis. In principle, LINFLUX

can be run with any steady Euler solution. In practice, however, all codes have different

error behaviors on finite grids. The TURBO and LINFLUX error behaviors should be similar,

since these codes use similar numerical representations for the field equations and boundary

conditions. So, in this sense a grid that works well for TURBO will work well for LINFLUX,

and vice versa. This may not be true for other mean flow analyses.

The computational mesh used in the TURBO and LINFLUX analyses is a sheared H-

mesh, typically generated using either the IGB [BH92] or the TIGER [SS91] grid-generation

packages. This structured mesh defines a curvilinear coordinate system, the boundaries

of which lie along the boundaries of the physical domain, such that there is a one-to-one

correspondence between the points, R, in the physical domain and the points, a, in a rect-

angular computational domain, where the grid is uniform and orthogonal. The mesh points

in physical space define the eight vertices of the non-overlapping hexahedral cells that fill

the solution domain. For the sheared H-mesh, the al, a2 and a3 computational coordinates,

or the I, J, K computational mesh indices, refer to the axial, radial and the blade-to-blade

or circumferential directions, respectively. Cell faces are surfaces of constant computational

coordinate, so that each cell is bounded by the six surfaces, defined by al = I - 1/2 and

I + 1/2, and a2 = J - 1/2 and J + 1/2, and a3 = K - 1/2 and K + 1/2. The connectivity

of the cells is thus known from the computational coordinates, with neighboring cells given

by changing a computational coordinate by one.

5.1 Finite Volume Equations

Let the symbol ^ refer to a quantity expressed in terms of cell parameters. Then, a finite-

volume spatial discretization of the pseudo time dependent form of the linearized unsteady
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equation (3.16a)can be written in the form

0fi 0S^ iw(A0)U 5jfj_+(Avg)S+_(R V_)S -f07 - i_a- _j_j+ b-ffu- - " = (5.1)

where

0F_ _ 0Fk
= _u' fJ= b-U" = _J_-b--_-"= _fk, and fy = -_jU + a_F_. (5.2)

In equations (5.1) and (5.2), u, U, and S represent average values of the physical state

and source term vectors over a mean cell volume; 0/0m is the pseudo time derivative; 0 is

the mean cell volume; fijk is the mean area of the constant (_j cell face projected in the 5:k

direction; the vectors fj. and Fj are the unsteady and steady fluxes, respectively, across a

constant O_j cell face; f_ is the unsteady flux, across the constant c_j face, that is associated

with the deformation field, R; and _ is the residual of the first-harmonic unsteady equation.

The steady quantities v_, Ajk, U, Fj (U) and S(U, _) are regarded as known for the linearized

unsteady analysis.

The operator 5j in (5.1) denotes the difference in the j-direction across adjacent cell

interfaces, e.g., (fj()lS,z,g = ( )S,J+I/2,K -- ( )S,J-t/2,/_, where I, J and g are cell indices,

and the J+ 1/2 are the indices of the cell faces that are perpendicular to the hi-direction. The

repeated j index in (5.1) implies summation over all computational coordinate directions, so

that the term

+f3 I,J,K+I/2 -- f'3 I,J,K-112

(5.3)

is the net unsteady flux through a cell due to the unsteady fluid motion, and 5if d is the net

unsteady flux due to grid motion.

The linearized perturbation equation contains source terms that arise because this equa-

tion has been expressed in terms of the reference spatial coordinates, :_. The source terms

depend on known steady flow properties and on the prescribed displacement field, R(_).

They are associated with changes in cell volume, cell face area, and cell radial location. The

volume source term is given by -iaj(A0)U + (Av_)S, where Av9 = (_j(AjkRxk) is the com-

plex amplitude of the first-harmonic perturbation in the cell volume. The cell face source

term, -hjf d, accounts for the net mean flux through the moving cell faces. The complex

amplitudes of the first-harmonic perturbations in the projected face areas, ajk, are computed

using first order expansions in R for the area of a cell face, and the swept volume is given by

Oj --- iwAjkRz_. In evaluating A_9 and 0j, the R_ are taken to be the average displacements

over a cell face. The remaining grid deformation source term, _(R. V_)S, where R is based

on the average displacement of the cell vertices, accounts for changes in cell radial location.

The field equation (5.1) must be solved subject to the conditions imposed at the bound-

aries of the computational domain. Flow tangency conditions, cf. (3.17), are applied at the

blade surfaces and the duct walls, a phase-lagged, periodicity condition, cf. (3.15), is applied

at the blade-to-blade periodic boundaries, and analytic/numeric far-field eigensolutions are

22



matched to the numerical near-field solution at the inflow and outflow boundariesof the
computational domain.

The flow tangency conditions are implementedby using phantom cells inside a solid
surface.The density and pressurein a phantomcell aredefinedusinga reflectioncondition,
i.e., the phantom cell values, Pph and Pph, are set equal to the interior values, Pint and

Pint at the adjacent cells within the fluid. This reflection condition is first-order accurate

because the effects of surface curvature on the pressure are neglected. To obtain higher

order accuracy, a pressure extrapolation or a solution to the normal momentum equation

would be required. The phantom cell velocity is calculated such that the velocity at the solid

surface, which is the average of the velocities in the phantom and the interior cells, satisfies

the flow tangency condition, in a manner consistent with the finite volume discretization.

Thus, the phantom-cell velocity is given by

Vph = Vine -'{-2 (--Vine " _- -_ ifMR-fi 2t-V. [/_(fldA)]/A) fi -3t- 2V. fi[/_(fidA)]/A (5.4)

where A(fidA), cf. (3.11), accounts for the changes in the normal direction and area of the
cell-face that coincides with the solid surface.

In imposing the periodicity condition, we take advantage of the grid periodicity in the

blade-to-blade direction to define the state vector in the cells that lie along a periodic bound-

ary. Thus, if NK denotes the number of blade-to-blade grid points, then the number of

blade-to-blade grid cells is NK - 1, and the periodicity condition can be written as

UlI,J,K _- T±lUI,J,K±(NK_I) exp(+ia) . (5.5)

where I, J and K are cell indices, and the Tn matrix rotates the x2 and x3 components of

the momentum vector through n blade passages.

The far-field conditions allow for the prescription of external aerodynamic disturbances

and permit unsteady disturbance waves coming from within the solution domain to pass

through the inflow and outflow boundaries without reflection. The far-field solutions cur-

rently used in LINFLUX have been described in §4 of this report. It should be noted that
the far-field conditions used in TURBO are based on one-dimensional characteristic theory.

This should lead to no loss in the accuracy of nonlinear steady solutions, provided that the

computational inflow and outflow boundaries are placed far enough from the blade row so

that outgoing steady disturbances have decayed to negligible levels.

Pseudo-Time Marching Procedure

A pseudo-time marching technique is used to converge successive estimates for the com-

plex amplitudes of the unsteady conservation variables to constant or "steady-state" values.

For this purpose, the pseudo time derivative in (5.1) is approximated using a first-order

accurate, two-point, backward, difference approximation. In particular, we set

@Au n = __n+l , (5.6)

where the superscript n refers to the current or nth pseudo time level, @ = _/A_-, and

Au _ = u _+1 - u '_ is a pseudo-time update to the state vector. Equation (5.6) is used to
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predict the state vector u "+1 at the (n + 1)th pseudo time step in terms of the state vector

at the previous time step and the unsteady residual, _, at the (n + 1)th time step. The norm

IIAu"ll is expected to approach zero with increasing n.

After expanding the residual, _,+1, about the nth time level, we can write the discretized

unsteady field equation as

(0;.)(_I+ Au _ (5.7)

where _ is defined in (5.1) and 0i'/0u is a constant, since the unsteady residual is a linear

function of the state vector u. The change in the residual at the nth time step due to the

pseudo-time update is given by

= + ) - , (5.s)
and it follows from (5.1), (5.7) and (5.8), that the pseudo-time update formula can be

expressed in the form

where s is the grid deformation source term.

5.2 Evaluation of Flux Terms

In this and the following subsections we will describe the spatial discretizations that are

used to approximate the flux terms on the left- and right-hand sides of equation (5.9) and the

pseudo-time integration used to solve this eqflation. To simp!ify these descriptions, we will

consider a "one-dimensional flow" in which Fj = F and fj -- f are the steady and unsteady

flux vectors in the aj = a computational coordinate direction. The subscript J will refer to

the cell volume bounded by the cell surfaces at a = J+ 1/2 and a = J-1//2. The extensions

of the equations that follow to three-dimensional flows is straightforward conceptually, but

involves the use of tedious additional nomenclature.

Interracial Fluxes

A cell-centered finite-volume discretization requires that the fluxes at cell surfaces be

computed in terms of the values of the state vector in the neighboring cell volumes. In the

TURBO and LINFLUX analyses, a flux splitting technique is applied in which the flux at a

cell interface is computed in terms of a flux Jacobian matrix representing the local interface

conditions and the values of the state vector in the cell volumes adjacent to the interface.

The eigenvalues of the flux Jacobian matrix are used to determine which characteristic modes

are taken into account, thus controlling the direction of spatial differencing.

The flux splitting is based on a similarity transformation and an eigenvalue decomposition

of the flux Jacobian matrix, 0F/0U, into matrices that account for right (+) and left (-)

traveling disturbances. Thus, the flux vector, f, is split according to

t = b--flu= _-6 + _-ff u = W(£+ + £-)T-1., (5.10)
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wherethe (+) terms aredeterminedusinginformation from the negativecoordinatedirection;
the (-) terms, using information from the positive coordinate direction. The matrices
and T-1 contain the right and left eigenvectors,respectively,of 0F/0I_I, and /k+ and /k-

are diagonal matrices containing the positive (÷) and negative (-) eigenvalues, respectively.

Thus, the sign of the wave speed (i.e., + or -) determines the direction in which spatial

differencing is applied.

In the TURBO analysis, two methods are applied to evaluate surface fluxes. One is the

flux vector splitting scheme proposed by Steger and Warming [SW81]; the other, the flux

difference splitting scheme proposed by Roe [Roe81]. The former is applied to evaluate the

left-hand-side flux terms, i.e., the flux terms appearing in the implicit operator; the latter, to

evaluate those on the right-hand side. Flux vector splitting is used in the nonlinear analysis,

because the resulting flux Jacobians are easier to compute than those resulting from flux

difference splitting, and these Jacobians must be computed at each time step. In LINFLUX,

however, flux difference splitting is used to evaluate the flux terms on both sides of the linear

unsteady equation. This is leasable because the steady flux Jacobian matrices must only

be computed once, and it has been found to improve the convergence rates of the linear

unsteady solutions. The use of an inconsistent flux splitting in TURBO should only affect

convergence rates, but not the final converged solutions.

In the flux difference splitting approach, the flux, f'g+l/2, at the J ÷ 1/2 cell interface is

constructed from the flux in the cell to the left (J) or right (J + 1) of the interface plus the

flux due to waves approaching the interface due to the change in the state vector across the

interface. In the present implementation, we have chosen to evaluate the flux vector, f'y+l/2,

based on f(uj), and disturbances traveling to the left, i.e., at negative wave velocity. This

results an approximate expression for the unsteady flux at the J ÷ 1/2 interface of the form

b+112= i(uj, Aj+l/2) + (uj+, - uj)
J+112

(5.11)

In equation (5.11), f(uj,Aj+l/2) is a flux based on the state vector in the Jth cell and

the area of the J + 1/2 cell interface, and the flux Jacobian matrix 0F/0Uiuaoe _
Jq-ll2,Aj+ll2

Roe
is evaluated in terms of the intermediate state vector, Uj+I/2, and the area -_J+_/2. The

TTRoe is based on Uj and U j+l and is defined according to theintermediate state vector, ".-_J..}-l/2,
relations:

-_Roe Roe V/'ff_VJ ÷ _J+l

Vj+l/2 =t'j+ /2 = vr -PJ+ , v@-7+ v J+l
and (5.12)

ETRO e _J_J_T,J + P_/'ff_+IET,J-4-1

,J+1/2 = _ ._.

The flux, fJ+l/2, in (5.11) could also have been constructed from f(uj+l, Aj+I/2) and the

disturbances traveling at positive wave velocity, or from an average value of the flux vectors

in the neighboring cells and an average of the disturbances traveling at positive and negative

wave velocities.

The discrete approximation (5.11) is first-order accurate, since the interfacial fluxes are

based only upon information from adjacent cells. Higher order spatial accuracy can be
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achievedby adding correctivefluxes,which bring in information from additional neighboring
cells. In TURBO, flux limiters are usedin conjunction with the correctivefluxes to control
the dispersiveerrors that occur near shocksand stagnation points, but such limiters have
not yet beenincorporated into the LINFLUX analysis.

In LINFLUX, the corrective perturbation flux at the J + 1/2 interface is comprised of

right traveling waves at the upstream interface (J - 1/2) of the adjacent upstream cell (J)

and left traveling waves at the downstream interface (J + 3/2) of the adjacent downstream

cell (J + 1). These waves are approximated using the Roe-averaged flux Jacobian matrix at

the J + 1/2 interface. Thus, the enhanced approximation to the perturbation flux is given

by

5+1/2 _ _(uj,2j+l/2) + -_U _/2,_j+1_2 (uJ+_ - uj)

+ _ [OU u_/2,_j+_/_ (uj - uj__) - o-U u_:_/_,_,+_/2

and should result in second order spatial accuracy.

(5.13)

Right- and Left-Hand-Side Flux Terms

Once the interfacial fluxes have been computed, they are spatially differenced to compute

the flux terms that appear on the right- and left-hand sides of the unsteady equation (5.9).

The difference expression for the net unsteady flux through the Jth control volume is

(_" j "_ b+1/2 -- b--1/2 , (5.14)

and the second-order discrete approximation, cf. (5.13), is used in conjunction with (5.14)

to evaluate the net unsteady flux term that appears on the right-hand side of (5.9).

The left-hand side flux term in (5.9) represents the change in the net unsteady flux due to

the pseudo time update. It is evaluated using the first-order accurate flux difference splitting

approximation in (5.11), i.e., we set

0F J 0F I- (Auj+_ - Auj)

- _(/Xuj__,iij__/2) - OF - (_uj - Auj__) ,
b--Uu_oA/.,,_,__/.,

where f(Auj, 2_J-1-1/2) = COF/(_UJu_-uj ft_J+l/2AUJ = (OF/(_U)uj,Aj+I/2Au J.

(5.15)
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5.3 Pseudo-Time Integration

The linearized unsteady equation (5.9) is discretized, as outlined above, leading to a

system of linear algebraic equations. In the discretization, the flux terms appearing on

the left- and right-hand-sides of equation (5.9) are computed using flux difference splitting

and the approximations to the flux terms on the right-hand-side are corrected for higher

order spatial accuracy. The resulting system of algebraic equations is solved at each pseudo-

time step using an iteration procedure in which the left-hand side matrix is decomposed

into diagonal and off-diagonal, positive and negative, submatrices. Symmetric Gauss-Seidel

(SGS) iterations [WT91] are then applied to solve the decomposed, discretized, pseudo time-

stepping equation.

In particular, the pseudo-time stepping equation can be expressed in the form

(OjI + _uuOi'lu_) /Xu_ = DJ/ku_ - M+-l/ku_-I H- MJ+l/ku_+l : -_ ' (5.16)

where the D submatrix contains the diagonal elements of the original matrix, and the M + and

M- submatrices contain the off-diagonal elements in the negative and positive computational

coordinate directions, respectively. Based on the flux difference splitting scheme given in

(5.15), these matrices are given by

@]' - -Roe ADj = (E}j H- iw_j)I - _j 0S + _ gj,._j+l/2 _ uR__el/2,AJ+I/2 0U Vj_l/2 ' J-l�2

0F 0F- and Mj+ 1- ,
M+-I - 0U u:-,,,4:_1/2

(5.17)
where the J subscript refers to the Jth cell, the J + 1//2 subscripts refer to the right and left

interfaces of this cell, and J- 1 refers to the adjacent upstream cell.

Introducing l as the Gauss-Seidel iteration index, the iteration formula for the linearized

unsteady equation can be written in the form

DjAu_ M+_IAu__I - l-t-- = --Mj+tAuj+ 1 - r_
(5.18)

DzAulj + Mj+IAU_+ 1 = M+_lAu__t - r_ ,

= , . * -u n Aulj = utj--u _ and u L _ u_ +1. Thewhere l 1 2,.., L, u ° = u_, Au) = uj j, j,

first SGS iteration is over negative grid indices and the second iteration is over positive

grid indices. The iteration procedure thus involves an LU decomposition of the pseudo-time

update matrix, with forward and backward substitution. Once the pseudo-time solutions

converge to a steady state, i.e., I1_'_11 --+ 0, any error introduced by the iteration scheme

(5.18) vanishes. Only the discretization errors associated with the calculation of the residual

of equation (5.1) remain. The current LINFLUX implementation uses explicit boundary

conditions, which are incorporated into the LU-SGS iteration procedure, so that the bound-

ary conditions are imposed in a semi-implicit manner. This treatment has been found to

yield better convergence properties than a purely explicit implementation.
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6. Numerical Results

Unsteady aerodynamic response predictions will be presented to demonstrate the ac-

curacy and current capabilities of the 3D LINFLUX code. We consider three-dimensional

unsteady flows through a helical-plate rotor and a real-blade rotor based on the Tenth Stan-

dard Cascade Configuration [FV93]. We will refer to the former as a helical fan, and the

latter as the 3D 10th Standard Cascade. In each case, the rotor consists of 24 blades and

operates within a cylindrical annular duct of inner radius rH -- 3.395 and outer radius

rD = 4.244. Therefore, the circumferential blade spacing, G(r) = 27rr/NB, at midspan,

r -- 0.9ro, is unity. We assume that there is no clearance between the rotor blades and

the outer duct wall. Also, in each case, the steady background flow at inlet is axial and

uniform relative to a space-fixed or inertial reference frame. Thus, the inlet Mach number,

Mabs -- Mabs ---_o ___ -- M__¢_ is a constant.
We will consider unsteady flows that are excited by prescribed single-degree-of-freedom,

harmonic, blade motions (e.g., see Figure 2), or by acoustic excitations at inlet or exit.

The blade vibrations occur at unit frequency (_v = 1) and with a constant phase angle,

a - 2_rND/NB, between the motions of adjacent blades. The blade motions to be considered

are pure translations normal to the sectional blade chords (bending) and pure rotations about

axes at the blade midchords (torsion). These motions [cf. (2.1)] are defined by RB = hn

and RB(_B) = c_ x (xB - :_P), respectively, where h and a are the complex amplitudes of

the bending and torsional vibrations; n(r) = n0e0 + n_e_ is the unit normal to the blade

chord at radius r, which is tangent to the cylinder r = constant; and :XB --:XP is the distance,

at constant radius, to the point, XB(r), on the mean or reference blade surface from the

point, :Xp(r), at the mean position of the torsional axis. To allow convenient comparisons

between the LINFLUX predictions and those of two-dimensional unsteady flow codes, we

have assumed that the complex amplitudes of the vibratory blade motions are constant along

the span.

The linearized analyses have been applied to predict unsteady surface pressure and local

(wc) and global (Wc) work per cycle responses to the prescribed blade vibrations. The local

and global works per cycle are determined from the relations

WC(XB) ---- --Tclm{(PB/X(flBdAB)/ dAB + PBfiB)" l:t_} and

In equation (6.1), Irn{ } denotes the imaginary part of {

f

Wc =  c( )dAB . (6.1)

}; P is the steady pressure;

p is the complex amplitude of the unsteady pressure; the subscripts B and B refer to the

instantaneous and the mean blade surfaces, respectively; n is a unit normal vector pointing

out from the blade surface; d.4 is a differential element of surface area; /k(fiBdAB) is the

complex amplitude of the first harmonic component of nBdAe - fiBd-4B, cf. (3.11); and the

superscript • denotes the complex conjugate.

In addition to the unsteady flows excited by prescribed blade motions, we will also con-

sider unsteady flows through the rotor blade rows that are excited by acoustic disturbances

at inlet or exit that travel toward the blade row. These excitations are assumed to arise from

the aerodynamic coupling between the rotor and an adjacent upstream or downstream sta-

tor, consisting of Nv equally spaced blades or vanes. In particular, we will consider acoustic
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excitations to the rotor at the vane passing frequency w = -Nvf_ and at interblade phase

angle cr = 2ZrND/NB = 2_r(NB -- Nv)/NB.

Numerical results for the unsteady pressure responses in the field and at the blade surfaces

will be presented for acoustic excitations at ND --= NB - Nv nodal diameters (m -- 0) and

zero radial crossings (# = 0). The state vector for such acoustic excitations has the form,

cf. (4.22),

U_A(r,O,_) : a_AuR'_(r)exp(x:_ + iNDO) , _ < _: . (6.2)

where X _: and UAR'_:(r) are solutions of the far-field eigenvalue problem. The constant aA_ in

(6.2) is chosen so that the complex amplitude of the pressure associated with the acoustic

excitation, i.e.,

p_(r,O,_) =a_pR'_(r)exp(x'_ + iNDO) , _ < _= (6.3)

has a maximum magnitude of one, at say r = rmax, on the radial line passing through the

leading edge of the reference-blade chord at midspan, and so that pA_ = PA,aef_: = (1, 0) is a

real quantity at r = rmax, see, e.g., Figures 6 and 26.

In addition to the LINFLUX results, for purposes of comparison, we will also present

response predictions based on the two-dimensional classical analysis of Smith [Smi72] and

on the two-dimensional LINFLO analysis [Ver93]. The Smith analysis applies to flat-plate

cascades, staggered so that the blade mean positions are aligned with a uniform relative

steady background flow. The unsteady flow is regarded as a small perturbation of this uni-

form stream. In LINFLO, which applies to more realistic two-dimensional configurations,

the unsteady flow is regarded as a small perturbation of a nonuniform, potential, steady

background flow. The TURBO [JHW92] analysis has been used to provide the steady back-

ground flow information for the LINFLUX linearized unsteady calculations. A utility code

was developed to convert the results of the TURBO analysis, which uses a multi-block grid in

the absolute frame, into a form usable for the LINFLUX analysis, which uses a single-block

grid in the relative frame. The full-potential analysis CASPOF [Cas83] has been used to

provide the steady background flows for the LINFLO calculations.

The TURBO nonlinear steady and the LINFLUX linearized unsteady solutions are de-

termined, over a single extended blade passage, on the same H-type grid. The grids used,

cf. Figures 3 and 4, for the two geometries considered herein, namely, the helical fan and 3D

Tenth Standard Cascade, consist of 141 axial, 41 tangential and 11 radial surfaces (56,000

cells), and extend one axial chord, at mid-span, upstream and downstream from the blade
row. This axial extent was found to be sufficient for the mean flow field to reach axisym-

metric steady states at the computational inflow and outflow boundaries. Both grids have

81 axial points on the upper and lower blade surfaces, and 30 axial points on the upstream

and downstream periodic boundaries. They were found to be sufficient for most of the cal-

culations reported herein, with approximately 20 points per wave being applied to resolve

the dominant acoustic waves. For some of the 3D Tenth Standard Cascade calculations,

the near-sonic conditions on blade suction surfaces resulted in short wavelength acoustic

response phenomena that could not be resolved on the prescribed 141 x 41 × 11 mesh.

In each case, the axial grid distribution has been clustered near blade leading and trailing

edges; the circumferential grid distribution, near blade surfaces; and the radial grid distribu-

tion is uniform. For the helical fan, the normal and chordwise grid spacings at the leading

edge are 0.25% and 0.35% of chord, respectively, see Figure 3. For the 3D Tenth Standard
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Cascade,the normal and chordwisegrid spacingsat the leadingedgeare0.02%and 0.10%of
chord, respectively,seeFigure 4. At present,for real bladecalculations,the circumferential
grid surfacesmust be tightly clusterednear the blade surfacesto minimize the numerical
lossesnear the bladesthat occur in a TURBO steady-flowsolution. Suchlossescan leadto
significant errors in a subsequentLINFLUX, linearizedunsteadyflow solution. For example,
a spurious total pressurelossof greater than 1%has beenfound to distort the LINFLUX
predicted surfaceresponsesto prescribedbladevibrations.

The LINFLUX near-field, finite-volume solutionshavebeencoupledto far-field acoustic
eigensolutions,which havebeendeterminedona radial grid consistingof 24points clustered
near the hub and duct walls. For the presentcalculations, the artificial dissipation term in
(4.17) is set equal to zeroand any nearly convecteddisturbancesthat occur downstreamof
the bladerow aresimply convectednumerically through the computationaloutflow boundary
and into the far downstreamregionof the flow.

The full potential steadyand the LINFLO linearizedunsteadysolutionsweredetermined
on composite meshesconsisting of local C-meshesembeddedin global H-meshes,which
extended one axial chord upstream and downstreamfrom the blade row. The H- and C-
meshesusedwith LINFLO consistedof 155axial and 41 tangential linesand 101radial and
21circumferential lines, respectively.CoarserH- and C- mesheswereusedfor the CASPOF
calculations.

The 3D numerical solutions reported hereinweredeterminedon an IBM-3CT Worksta-
tion. The TURBO analysis is currently implementedin the absoluteframe of reference,so
that "steady" calculationsfor rotating blade rows must be convergedto a time-dependent,
steady-statesolution, asopposedto a time-independent,steadysolution. For a steady-state
solution, the time steppingalgorithm must beconvergedat eachtime step. To achievea low-
losssteady-statesolutionsmall time steps(_ 200,000per wheelrevolution) and a relatively
large number of subiterations (._ 10) per time step are required, leading to relatively long
CPU times. In particular, the TURBO analysishas required approximately6 CPU dayson
the IBM 3CT to reacha converged,low-loss,steady-statesolution for the3D Tenth Standard
Cascade. If a rotating frame or steady version of TURBO is constructed the foregoing CPU

time should be reduced by an order of magnitude.

The LINFLUX, linearized, unsteady calculations required from 1,000 to 3,500 pseudo-

time steps to converge to an 0.1% tolerance for global unsteady aerodynamic response quan-

tities. Using two SGS sub-iterations, approximately 600 time steps could be completed per

CPU hour on the IBM 3CT, corresponding to 110 #sec./time-step/cell or 1.5 to 6 CPU

hours for a converged unsteady solution. For purposes of comparison, TURBO nonlinear

steady and unsteady calculations require approximately 600 /_sec./time-step/cell with two

sub-iterations and 2600 #sec./time-step/ceU with ten sub-iterations. The memory require-

ments for the two analyses, using 32-bit arithmetic, are approximately 2.2 kilobytes/cell for

LINFLUX, and 1.8 kilobytes/cell for TURBO. The TURBO requirement is based on the

option of using two blocks per blade passage and in-core storage for all variables. LINFLUX

is always applied using a single block and in core storage for all variables. Note that the

LINFLUX analysis converges to a pseudo-steady solution in a single blade passage, whereas

a TURBO nonlinear unsteady analysis converges to a periodic solution over multiple blade

passages. The computer resources required for executing TURBO are thus much greater

than those required for executing LINFLUX, especially for nonlinear unsteady calculations
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with excitations at nodal diametersthat requirea large numberof blade passages.

6.1 Helical Fan

We consider a helical fan with mean or steady-state blade positions, in the rotating frame,

defined by

rO=_tanO(r)+nG(r), 21_l<cos_(r), n=0, ..., NB--1, (6.4)

where G(r) = 21rr/NB is the circumferential blade spacing, and O(r) = tan-l(gtr/V_) is the

blade stagger angle. The blade chord, c(r) = 1, is taken to be constant along the span;

therefore, because of blade twist, the axial chord, c_x(r) = cos O(r), varies with radius from

0.748 at the hub to 0.669 at the tip. Our local surface response predictions for the helical fan

are plotted versus (_ - _lem)/Ca_m, i.e., the ratio of the axial distance from the blade chord

leading edge at midspan, _ -- _lem, to the axial chord at midspan, C_xm-

The helical fan operates in a uniform, axial, absolute, inlet flow, which occurs at M_,-o_ =

0.495, and rotates at angular speed ]_1 = 0.185. Since the blades are aligned with the inlet

relative mean flow velocity, the steady relative velocity is V -- ---o_vabs-- Ftx r and the steady

thermodynamic properties of the fluid are constant throughout the entire fluid domain.

Hence, there are no steady loads acting on the blades, and the inlet (-cx_) and exit (+oc)

freestream conditions are identical.

The foregoing helical-fan geometry and operating condition were chosen to provide a

relatively simple 3D test case and to allow meaningful comparisons between the three-

dimensional LINFLUX predictions at blade midspan and those of earlier two-dimensional

analyses. The two-dimensional results apply to a flat plate cascade, with G -- 1 and

e --= 45 deg, operating in a uniform relative inlet flow at M-o_ -- 0.7 and _-o_ -- 45 deg,

where _-o_ is the inlet flow angle.

Blade Vibrations

The 3D LINFLUX and the 2D Smith analyses have been applied to predict the unsteady

aerodynamic responses of the helical fan with blades undergoing either pure torsional vi-

brations about midchord or pure bending vibrations. These motions occur at unit reduced

frequency, _ -- 1, and at nodal diameters of ND ---- --6, --5,..., 18, i.e., at interblade phase

angles, a = 21rND/NB, extending from -90 deg to 270 deg in increments of 15 deg.

The predicted axial eigenvalues, X = _ + i_, and radial pressure eigenmodes, pR(r), for

three circumferential (m = -1, 0, 1) and three radial (it = 0, 1, 2) acoustic modes are shown

in Figures 5 and 6, respectively, for the helical fan subjected to unsteady excitations at w = 1

and ND -- =76 (Or --- =F90 deg). Since the inlet and exit mean flows for the helical fan are

identical, the acoustic properties X and pR(r) are the same in the upstream and downstream

regions of the flow. The far-upstream and far-downstream modal amplitudes will generally

differ, however. Moreover, because the absolute mean flow is uniform, the radial shapes of

the upstream and downstream traveling pressure disturbances in a given mode are identical,

and the phase of each pressure disturbance is independent of radius.

If the excitation is a prescribed blade vibration, only acoustic response disturbances will

be present in the far field, i.e., only upstream propagating and decaying acoustic distur-

bances occur far upstream of the blade row and only downstream propagating and decaying
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disturbances occur far downstream. The results in Figure 5 indicate that for w = 1 and

No ---- --6 all acoustic response modes are cut off, i.e., they all attenuate. In this case we

refer to the blade motion as being subresonant [Ver89b]: The (m, #) = (0, 0) disturbances

are the least damped with 1131= 1.806. For a_ = 1 and ND = 6, the disturbances in the (0, 0)

mode propagate, with _ -- 1.715 and _;_ -- 0.222 for the upstream and downstream trav-

eling wave, respectively. All other waves attenuate, with the (0,1) disturbances having the

least attenuation, i.e., I_l -- 4.212. In this case the blade motion is termed superresonant.

The results in Figure 6 indicate that the pressure disturbances in the two (0, 0) modes have

little radial variation, whereas the pressures in the higher-order, attenuating modes have

significant variation. As noted previously, the higher order modes can be cut on at higher

excitation frequencies.

Local (we) and global (Wc) work per cycle predictions for the helical fan undergoing

pure torsional vibrations about midchord and pure bending vibrations at w -- 1 and a --

-90deg and at w -- 1 and a = 90deg are shown in Figure 7. Here, the LINFLUX local

response predictions are given at the hub (r/rD -- 0.8), midspan (r/rD -" 0.9), and at the

tip (r/rD -- 1.0). The results indicate that, for the excitations considered, the unsteady

response at a blade surface does not vary significantly along the span, except perhaps over a

segment of the blade surfaces extending from 0 to 20% of blade chord. For the most part, the

radial variations in this region are due to the change, with radius, in the axial blade chord.

The LINFLUX calculations for both the subresonant a = -90deg and the superresonant

a = 90 deg blade motions, indicate that the pressure disturbances in the dominant far-field

acoustic response mode, i.e., the (0,0) mode, are of small amplitude at the computational

inlet and exit boundaries.

Unsteady pressure difference, i.e., [p] = Plower- Pupper, predictions, based on the 3D

LINFLUX and the 2D Smith analyses, at midspan (r/rD = 0.9) of the helical fan vibrating

in pure torsion and pure bending are shown in Figures 8 and 9, respectively, for blade

motions at unit frequency and interblade phase angles, a, of -90deg, 0deg, +90 deg and

+180 deg. The motions at cr = 0 deg and a -- 90 deg are superresonant, in each case a single

acoustic response disturbance at (m, #) = (0, 0) persists far upstream and far downstream

of the blade row. The motions at a -- -90 deg and cr -- 180 deg are subresonant. The

LINFLUX and the semi-analytical predictions, given in Figure 8, for the real (in-phase with

blade displacement) and imaginary (out-of-phase with blade displacement) components of

the unsteady pressure jump, _], across a blade surface are in very good agreement. Small

discrepancies occur in the blade leading edge region, which are probably caused by the small

radial variations present in the helical fan flows.

Global work per cycle predictions for the blades of the helical fan and those of the

corresponding flat-plate cascade undergoing pure torsional vibrations about midchord and

pure bending vibrations are shown in Figure 10. In particular, results for the global work

per cycle are given versus interblade phase angle for blade vibrations at unit frequency. The

3D LINFLUX results, indicated by the symbols in Figure 10, have been determined for

No -= -6, -5,..., 18; the Smith code results, for -90deg _< a _< 270deg in increments of

one degree. Note that we have multiplied the 2D work per cycle predictions by the blade

span rD -- rH -- 0.2 rD = 0.849 to allow a convenient comparison with the 3D LINFLUX

predictions. Also, the vertical lines above the curves in Figure 10 indicate the cut-off or

resonance conditions, i.e., O2D = -29.4 deg and a+D = 107.3 deg for the 2D fiat-plate cascade
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vibrating at w = 1 and, therefore, approximate resonanceconditions at w -- 1 for the

helical fan. The fiat-plate blade motions at a_D < a < a+D are superresonant; those at

-90 deg < a < a_-D or a+D < a < 270 deg are subresonant. As can be seen from the results

in Figure 10, the agreement between the LINFLUX numerical and the Smith semi-analytical

predictions is very good over the entire nodal diameter or interblade phase angle range of

blade vibration.

Acoustic Excitations

We proceed to consider the unsteady pressure responses of the helical fan to acoustic

excitations at _ = -Nv_ and a = 27r(NB - Nv)/NB, resulting from the aerodynamic

coupling between the fan and an adjacent upstream or downstream stator consisting of

Nv vanes. First, we will consider stators consisting of 18 vanes, and therefore, acoustic

excitations at w -- 3.332 and a = 90 deg (ND = 6); then, stators consisting of 21 vanes, i.e.,

acoustic excitations at w = 3.887 and a = 45 deg (ND = 3). In the following discussion, an

acoustic excitation from upstream will refer to a downstream propagating (m, #) = (0, 0)

modal acoustic disturbance, imposed at the computational inflow boundary. Similarly, an

acoustic excitation from downstream will refer to an upstream propagating (0,0) modal

acoustic disturbance, imposed at the computational outflow boundary.

The computed axial eigenvalues of a far-field acoustic disturbance for an unsteady flow

through the helical fan at w = 3.332 and a = 90deg are shown in Figure 11, where the

numbers m, # above each symbol indicate the circumferential (m) and radial (#) mode order.
R r 0, 1,2 are identical to thoseThe radial pressure modes, Pm,(), for m = -1, 0, 1 and # =

shown in Figure 6. Only the disturbances in the (0,0) mode, for which the pressure shows

little variation with radius, are of propagating type. The downstream propagating (0,0)

excitation or response has an axial wave number, _, of -1.662; an upstream propagating

(0,0) disturbance, an axial wave number of 5.740. The remaining response modes attenuate

with increasing distance from the blade row, and the disturbances in the (0,1) mode, which

have one radial node (see Figure 6), have the lowest attenuation coefficient, i.e., I_1 = 2.114.

Unsteady surface pressure distributions, as predicted using the 3D LINFLUX and the

2D LINFLO analyses, for the helical fan subjected to an acoustic excitation from upstream

at a_ = 3.332 and a = 90 deg are shown in Figures 12 and 13. Here, the real and imaginary

components of the surface pressure are in- and out-of-phase, respectively, with the excitation

pressure at the midspan leading-edge point. The LINFLUX predictions for the unsteady

surface pressures at r/rD -_ 0.8, 0.9 and 1.0, shown in Figure 12, indicate that the radial

surface-pressure variations are small. As a result, the LINFLUX and LINFLO surface-

pressure predictions at r/rD --- 0.9, given in Figure 13, are in good agreement. Again we

can attribute the small differences to the radial gradients that exist in the three-dimensional

flow. According to the LINFLUX solution, the unit-amplitude pressure excitation from

upstream gives rise to upstream and downstream propagating (0,0) acoustic response waves

that have amplitudes of 0.617 and 0.519, respectively, in the far upstream (_ < __) and far

downstream (_ > _+) regions of the flow. The corresponding LINFLO amplitude predictions

are 0.694 and 0.517. The amplitudes of the attenuating acoustic response waves are small

at the computational inflow (_ = __) and outflow (_ = _+) boundaries, which is indicative

of a highly two-dimensional unsteady flow within the computational domain.
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Contours of the in-phasecomponent,Re{p}, of the unsteady pressure at midspan, as

predicted by the LINFLUX and LINFLO analysis, for the unsteady flow driven by the

acoustic excitation from upstream at w = 3.332 and a = 90deg are shown in Figure 14.

Again, the results of the two analyses are in very good agreement. It is important to note

that the LINFLUX results show no acoustic reflections at the computational inflow and

outflow boundaries, thereby indicating a successful coupling of the near-field, finite-volume

and the far-field eigenanalyses.

Results similar to those shown in Figures 12, 13 and 14, but for an acoustic excitation from

downstream at w = 3.332 and cr -- 90deg, are given in Figures 15, 16 and 17. The LINFLUX

calculations indicate that the unit-amplitude, (0,0), acoustic excitation,from downstream

occurs at _ -- 5.740 and produces propagating, (0,0), acoustic responses at amplitudes

of 0.560 and 0.266 in the far upstream and far downstream regions, respectively. This

excitation also produces attenuating, (1,0), acoustic responses at amplitudes of 0.111, at

both the computational inflow and outflow boundaries, indicating some three-dimensional

content (cf. Figure 6) to the unsteady flow in the near field. The LINFLO results also

indicate an excitation wave number of 5.740, and upstream and downstream propagating

acoustic responses at amplitudes of 0.686 and 0.266. The amplitudes of the higher order

response modes are small.

The three-dimensional content in the near-field unsteady flow is illustrated by the un-

steady surface pressure distributions at the hub, midspan and tip of the helical fan, shown in

Figure 15, and the differences between the LINFLUX and LINFLO surface pressure predic-

tions at midspan given in Figure 16. Note that the 2D and 3D surface pressure responses at

midspan are in good qualitative agreement, but the radial variations in the three-dimensional

unsteady flow cause some differences. The unsteady pressure contours at midspan, as pre-

dicted by the LINFLUX and LINFLO analyses (see Figure 17), are also in good agreement.

It should be noted that the LINFLUX calculation for the acoustic excitation from down-

stream was also performed on a 161 × 51 × 17 mesh, with only slight changes in the response

predictions.

The highly two-dimensional, (m, #) = (0, 0), acoustic excitations at w = 3.332 and a =

90 deg produce unsteady flows through the helical fan in which one nearly two-dimensional

(0,0) acoustic response disturbance exists in both the far upstream and the far downstream

regions of the flow (cf. Figure 11). In contrast, if we consider (0,0) acoustic excitations

arising from the aerodynamic interactions between the fan rotor and an adjacent upstream

or downstream stator consisting of 21 vanes, i.e., acoustic excitations at w = -Nv_ - 3.887

and a -- 27r(NB- Nv)NB = 45 deg(ND = 3), two propagating acoustic response disturbances

persist in each far-field region (Figure 18). This could be indicative of more significant radial

variations in the near-field unsteady response.

The axial eigenvalues of the modal acoustic responses in the far field of the helical fan, sub-

jected to an unsteady excitation at w = 3.887 and cr = 45 deg, are shown in Figure 18. These

results indicate that there are two propagating acoustic disturbances, at, (rn, tt) = (0, 0) and

(m, #) = (1, 0), in each of the far-field regions. The (0,0) and (1,0) downstream traveling dis-

turbances occur at axial wave numbers of-1.980 and 1.925, respectively, the corresponding

upstream propagating disturbances at 6.058 and 6.229, respectively. The remaining modes

attenuate, with the (0,1) mode having the lowest attenuation coefficient. The radial modes of

the lowest-order modal acoustic disturbances are similar, but not identical, to those shown
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in Figure 6. The (0,0) modes are almost constant, but the (1,0) and (0,1) modes show

significant radial variation.

Unsteady surface pressure responses, as predicted using the LINFLUX and LINFLO

analyses, for the helical fan subjected to (0,0) acoustic excitations from upstream and down-

stream at unit amplitude, w -- 3.887, and a = 45 deg are given in Figures 19 through 22. For

the upstream excitation, the surface pressure distributions at the hub, midspan and tip (Fig-

ure 19) show moderate variations along the span and fairly significant differences between

the LINFLUX and LINFLO results at midspan (Figure 20). The LINFLUX calculations in-

dicate that the unit-amplitude acoustic excitation from upstream produces propagating (0,0)

and (1,0) acoustic response disturbances with amplitudes of 0.483 and 0.033 far upstream

and with amplitudes of 0.674 and 0.284 far downstream. The corresponding LINFLO results

are 0.603 and 0.378 upstream and 0.660 and 0.344 downstream. The remaining acoustic

response disturbances have attenuated to low amplitudes at the computational inflow and

outflow boundaries. The large differences between the LINFLUX and LINFLO predictions

for the amplitude of the (1,0), upstream traveling acoustic response wave may be due to

three-dimensional effects, or to the use, with LINFLUX, of a mesh with insufficient density

to accurately capture the upstream traveling acoustic response.

The predicted surface pressure responses to the acoustic excitation in the (0,0) mode from

downstream show a much stronger three-dimensional content, cf. Figure 21, and, therefore,

more significant differences between the 3D and 2D predictions at midspan, cf. Figure 22.

The downstream excitation produces (0,0) and (1,0) propagating three-dimensional pres-

sure responses at amplitudes of 0.167 and 0.172 far upstream and at 0.178 and 1.350 far

downstream. The corresponding 2D LINFLO results are 0.204 and 0.480 upstream and

0.205 and 1.586 downstream. It is interesting to note that, according to both calculations,

the downstream excitation in the m = 0 circumferential mode produces a much stronger

far-downstream response in the (1,0) mode than in the (0,0) mode. The relatively strong re-

sponse in the (1,0) mode far-downstream is indicative of significant radial variations through-

out the three-dimensional, unsteady flow field.

6.2 3D Tenth Standard Configuration

The 3D 10th Standard Cascade consists of 24 straight (untwisted) blades. The mean

positions of the blade chord lines are defined by

r0=_tane+nG(r), O<_<cosO, n=0,...,NB-1. (6.5)

Therefore, the blade-chord, leading edges lie in the axial plane _ = _le = 0 along the entire

span, and the axial chord length, Cax, is cos O. The blade sections at all radial stations

are those of a modified NACA 5506 airfoil, i.e., the thickness distribution of the standard

NACA airfoil has been altered slightly [Ver89a], so that the blade sections close in wedge-

shaped trailing edges. The blades are staggered at an angle, _, of 45 deg and have a

circumferential spacing, G = 2rcr/Ns, of unity at midspan. The blade row operates in a

uniform axial inlet flow, which occurs at M_a_ = 0.4015, and rotates at angular speed of

I_I = 0.2145. This geometry and flow condition were chosen to match the subsonic Tenth

Standard Configuration [FV93] at midspan, where the relative inlet Mach number, M-o_,

and the relative inlet flow angle, ___, are 0.7 and 55 deg, respectively.
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The steady,surface,Machnumberdistributions, aspredictedusingTURBO and CASPOF
analyses,for the 3D and 2D, 10th StandardCascades,areshownin Figure 23. The inlet and
exit, mean-flowquantities for the 3D calculation are givenin Figure 24. For the CASPOF,
full potential calculation, the relative inlet Machnumber, M__ -- 0.7, and inlet flow angle,

__¢¢ -- 55 deg, are prescribed and a Kutta condition is imposed at the blade trailing edges.

For the TURBO calculation the mean-flow, total pressure, total temperature, and inlet flow

angle are specified at the inlet (i.e., at _ = __ = -cax), and the mean-flow static pressure at

the hub is specified at the exit (( = C_x), so that the relative inlet flow at midspan matches

the 2D conditions.

The TURBO steady-flow predictions at the hub, r/rD : 0.8, midspan, r/rD = 0.9, and

tip, r/rD -_ 1.0, given in Figure 23, indicate that although the Mach numbers on the blade

suction and pressure surfaces show moderate variations with radius, the variation in steady

blade loading is small. Also, the 3D TURBO predictions at midspan are in close agreement

with the 2D CASPOF predictions. The TURBO results indicate that the maximum Mach

numbers on the suction surface of a blade are 0.849 at the hub, 0.906 at midspan, and 0.961

at the tip. These values occur at _/c_ -- 0.053, 0.073 and 0.085, respectively. Thus, the

flow is very close to Mach one in the tip region, along a blade suction surface, just aft of

the leading edge. The CASPOF predictions for the 2D cascade indicate a maximum Mach

number of 0.916 at _ -- 0.065.

For the three-dimensional flow, the steady pressure (P = 1.4577), density (p = 1.0), and

axial velocity (V_ -- 0.5736) have constant values at inlet and the relative circumferential

velocity, V0 = -_r varies linearly from 0.7283 at the hub to 0.9103 at the tip. At the

computational exit boundary, the steady pressure, density, and axial velocity vary with

radius (mean shear), and the circumferential velocity varies nonlinearly with radius (mean

swirl). As indicated in Figure 24, the steady blade loading causes increases in the pressure

and density and decreases in the axial and circumferential velocities, especially the latter.

Blade Vibrations

The 3D LINFLUX and the 2D LINFLO analyses have been applied to predict the un-

steady aerodynamic responses of the 3D and 2D 10th Standard Cascades to pure bending and

pure torsional blade vibrations at unit frequency and at nodal diameters of -6, -5,..., 18.

The predicted axial eigenvalues and radial pressure modes, p_,(r), for the acoustic modes

at m = -1,0, 1, # = 0, 1, 2 are shown in Figures 25 and 26, respectively, for an unsteady

excitation at _ = 1 and ND = 6 (a = 90 deg). Because of mean blade loading, the steady

inlet and exit conditions for the 3D 10th Standard Cascade differ. As a result, the acoustic
R

properties, X,_, and Pro,, in the far-upstream region of the flow differ from those in the far-

downstream region. In particular, for an unsteady excitation at _ = 1 and a = 90 deg, the

acoustic disturbances in the (0,0) mode are of propagating type far upstream, but, of atten-

uating type far downstream. Since propagating acoustic response disturbances exist in the

upstream region, the unsteady excitation at w -- 1 and _ = 90 deg is classified as superreso-

nant. If this excitation is a prescribed blade vibration, only acoustic response disturbances

will occur in the far-field.

In the far-upstream region of an unsteady flow at _ = 1 and a = 90 deg through the 3D

10th Standard Cascade, the propagating acoustic response disturbance has an axial wave
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number, _¢,of 1.583and the leastdampedor (0,1) responsedisturbancehasan attenuation
constant,/3,of 3.990. In the far-downstreamregion,13 = -1.084 for the least-damped or (0,0)

response disturbance. Since the far-downstream mean flow is nonuniform, the axial wave

numbers of the attenuating disturbances in a given circumferential mode vary with radial

mode number, #, as indicated by the results in Figure 25, particularly those for m = 1.

The radial eigenmodes for the pressures associated with the far upstream acoustic exci-

tations or responses and the far downstream acoustic responses for an unsteady excitation

at _ = 1 and a = 90 deg are shown in Figure 26. Although the inlet and exit mean-flow

conditions differ, the upstream and downstream radial pressure modes are very similar, with

the downstream modes showing a somewhat greater radial variations than their upstream

counterparts. Note that the phase of a modal pressure disturbance is independent of ra-

dius for the uniform absolute mean flow at inlet, but the phase varies with radius for the

mean flow with swirl and axial shear that exists in the far downstream region. Thus, the

far-upstream, pressure modes, pR(r), are purely real, but the far-downstream modes have

some imaginary or out-of phase content.

Local (We) and global (We) work per cycle predictions for the 3D 10th Standard Cascade

undergoing pure torsional and pure bending vibrations at w = 1 and a = -90 deg (ND = --6)

and at _ = 1 and a = 90 deg (No "- 6) are shown in Figure 27, where the LINFLUX local

response predictions are given at the hub (r/rD = 0.8), midspan (r/rD = 0.9), and at the

tip (r/rD = 1.0). These results indicate that the local work per cycle responses to the blade

torsional and bending blade vibrations do not vary significantly along the span, however, the

results for the bending vibrations show greater radial variations than those for the torsional

motions. The LINFLUX calculations for the subresonant a = -90 deg and the superresonant

a = 90 deg blade motions reveal that, for the most part, the far-field acoustic responses

are of small amplitude at the computational inflow and outflow boundaries. However, the

superresonant torsional and bending vibrations at a -- 90 deg produce upstream propagating

acoustic response disturbances which have amplitudes, aA, of 1.352 and 1.540, respectively,

and occur at an axial wave number, _, of 1.583. The corresponding LINFLO predictions

are aA = 1.529 and 2.822 and _¢ = 1.603. Thus, there is a substantial difference between the

LINFLUX and LINFLO predictions for the upstream propagating, (0,0), acoustic response

wave caused by the bending vibration.

Local work per cycle predictions at midspan, as determined from the 3D LINFLUX

and the 2D LINFLO analyses, for the 10th Standard Cascade vibrating in torsion and

bending are shown in Figures 28 and 29, respectively, for blade motions at unit frequency

and at interblade phase angles, a, of-90 deg, 0 deg, +90 deg and +180 deg. The motions at

a = 0 deg and 90 deg are superresonant. For the in-phase motions at a = 0 deg, propagating

acoustic response disturbances, at (m,#) = (0,0), occur both upstream and downstream

of the blade row. For the motions at a = 90deg, such a disturbance only occurs in the

upstream region. For the (subresonant) motions at -90deg and a = 180deg all acoustic

response disturbances attenuate.

The 3D LINFLUX and the 2D LINFLO predictions, given in Figure 28, for the torsional

blade vibrations are in very good agreement. Those, in Figure 29, for the bending vibrations

at cr = -90, 0 and 180 deg show small differences over the entire blade. The reasons for

these differences are not understood at present, but similar discrepancies have been reported

in our earlier work in which the predictions of 2D nonlinear [AV94, AV96] and 2D linearized
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[VMK95, MV95] Euler analyseswere comparedwith LINFLO results. The local work per
cycle predictions for the bending vibration at a -- 90 deg show similar small differences

along the pressure surface, but large differences on the suction surface over the forward half

of the blade. The reasons for the large discrepancies along the suction surface have not

been established at this time. However, we suspect that local, high-wave-number, acoustic

responses, occurring in regions of high-subsonic steady Mach number, are not adequately

resolved on the 141 x 41 x 11 H-mesh used for the LINFLUX calculations.

Global work per cycle predictions for the 2D and 3D 10th Standard Cascade cascades

undergoing prescribed blade vibrations are shown in Figure 30, where results for the global

work per cycle versus interblade phase angle are given for pure torsional vibrations about

midchord and pure bending vibrations at unit frequency. The 3D LINFLUX results, indi-

cated by the discrete symbols in Figure 30, have been determined for No -_ -6, -5,..., 18;

the 2D LINFLO results, for -90deg < a _< 270deg in increments of one degree. As in

the case of the helical fan, we have multiplied the 2D work per cycle predictions by the

blade span, rD -- rH -= 0.2 rD -- 0.849, to allow a convenient comparison between the 3D

LINFLUX and the 2D LINFLO predictions. Also, the vertical lines above the curves in

Figure 30 indicate the cut-off or resonance conditions, for the 2D cascade vibrating at 03 = 1

and, therefore, approximate resonance conditions, at 03 = 1, for the 3D configuration.

The resonance or cut-off conditions for the two-dimensional configuration are a-oo =

-26.93deg and a+o¢ = ll7.12deg in the far upstream region and a+o ¢ = -31.80deg and

a+o¢ = 59.79 deg in the far downstream region. The superresonant blade motions at 03 = 1

and at interblade phase angles between these cut-off values send a propagating wave into

the upstream and/or downstream regions of the flow. The blade motions at -90 deg < a <

-31.80deg and 117.12 deg < a _< 270deg are subresonant. The results in Figure 30 indicate

a very good agreement between the 3D LINFLUX and the 2D LINFLO global response

predictions over the entire nodal diameter or interblade phase angle range of blade vibrations.

We should note, however, that for superresonant bending vibrations at a -- 75, 90 and

105 deg, in which a propagating acoustic response disturbance occurs far upstream, but all

other acoustic response disturbances attenuate, the LINFLUX and LINFLO local responses

show large differences along a blade suction surface. These are similar in magnitude to those

revealed by the local work per cycle predictions in Figure 29 for the bending vibration at

ND =6.

Acoustic Excitations

We proceed to consider the unsteady pressure responses of the 10th Standard Cascade

to acoustic excitations at _ = -Nvfl and a = 27r(NB -- Nv)/NB, that result from the

aerodynamic coupling between the fan and an adjacent stator consisting of Nv vanes. First,

we consider upstream and downstream stators consisting of 15 vanes, and therefore, acoustic

excitations at w = 3.218 and a = 135deg (ND = 9); then, an upstream stator consisting

of 18 vanes, which produces an acoustic excitation at w = 3.861 and a = 90deg (ND = 6).

As in our discussion on the helical fan, an acoustic excitation from upstream refers to a

downstream propagating (m,/_) = (0, 0) acoustic disturbance_ imposed at the computational

inflow boundary. Similarly, an acoustic excitation from downstream refers to an upstream

propagating (0,0) acoustic disturbance, imposed at the computational outflow boundary.
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The computed axial eigenvaluesof the far-field acoustic disturbances associatedwith
unsteady flows, at w -- 3.218 and a = 135deg, through the 3D 10th Standard Cascade

are shown in Figure 31, where the numbers m, # associated with each symbol indicate the

circumferential (m) and radial (#) mode number. For the flows considered, only the (0,0)

modes, in which the pressure shows small variations with radius, are of propagating type.

In the upstream or inlet region, the downstream propagating (0,0) disturbance (excitation)

has an axial wave number, _, of -1.712; the upstream propagating (0,0) disturbance (re-

sponse), an axial wave number of 5.147. In the downstream or exit region, the upstream and

downstream propagating (0,0) disturbances have axial wave numbers of 3.146 and -0.949,

respectively. The remaining response modes attenuate with increasing distance from the

blade row, and the disturbances in the (0,1) mode, which have one radial node, have the

least attenuation, i.e., f_ = 2.235 far upstream and _ = -3.446 far downstream.

Unsteady surface pressure distributions, as predicted using the 3D LINFLUX and the

2D LINFLO analyses, for the 3D 10th Standard Cascade, subjected to a unit-amplitude

acoustic excitation from upstream at w = 3.218, a = 135 deg and (m, #) = (0, 0), are shown

in Figures 32 and 33. Here, the real and imaginary components of the pressure are in-

and out-of-phase, respectively, with the excitation pressure at the blade chord leading-edge,

= 0. The LINFLUX predictions for the unsteady surface pressures at r/rD : 0.8,0.9

and 1.0, in Figure 32, show moderate variations with radius along the blade suction surface,

but very small variations along the pressure surface. The LINFLUX and LINFLO surface

pressure predictions at midspan, in Figure 33, show good agreement on the blade pressure

surface, but poor agreement on the suction surface. We suspect that the combination of

high-subsonic steady Mach numbers along the suction surface and a relatively high unsteady

excitation frequency, lead to local attenuating acoustic responses at high wave numbers, that

are not resolved on the 141 x 41 × 11 H-grid used for the LINFLUX calculations. Note that

the 2D and 3D results agree on the pressure surface where the steady Mach numbers are

lower.

The LINFLUX results for the downstream traveling acoustic excitation at w = 3.218 and

a = 135 deg indicate that the unit-amplitude pressure excitation from upstream gives rise

to upstream and downstream propagating, (0,0), acoustic response waves at amplitudes of

0.691 and 0.683, respectively, in the far upstream (_ _< __) and far downstream (_ _ _+)

regions of the flow. The corresponding LINFLO predictions are 0.958 and 0.607, respectively.

Both analyses indicate that the amplitudes of the attenuating acoustic response waves at

the computational inflow (_ = __) and outflow (4 = (+) boundaries are small, which should

be indicative of a highly two-dimensional unsteady flow within the computational domain.

However, the steady Mach number variations along the span and the relatively high Mach

numbers along the suction surfaces of the blades (see Figure 23) seem to cause significant

three-dimensional unsteady aerodynamic responses in the vicinities of the blade suction

surfaces.

Contours of the in-phase component, Re{p}, of the unsteady pressure at midspan, as

predicted by the LINFLUX and LINFLO analysis, for the unsteady flow driven by the

acoustic excitation from upstream are shown in Figure 34. The results of the two analyses are

in good qualitative agreement, but there are important quantitative differences, particularly

in blade leading-edge regions, along the suction surfaces of the blades, and upstream of

the blade row. Again, the LINFLUX results show no spurious acoustic reflections at the
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computational inflow and outflow boundaries,indicating a successfulcoupling of the near-
field, finite-volume and the far-field eigenanalyses.

Results similar to those shown in Figures 32-34, but for an acoustic excitation from
downstream at unit amplitude, w = 3.218, a = 135deg and (m,#) = (0,0), are given

in Figures 35-37. The LINFLUX analysis indicates that the acoustic excitation occurs at

_ -- 3.146 and produces propagating, (0,0), acoustic response disturbances, at amplitudes of

0.579 and 0.183, in the far upstream and far downstream regions, respectively. The LINFLO

analysis indicates that _ = 3.172 and amplitudes of the propagating acoustic waves of

0.908 upstream and 0.228 downstream. Both analyses predict that the amplitudes of the

attenuating acoustic responses are small at the computational inflow and outflow bQundaries.

The unsteady surface pressure distributions at the blade hub, midspan and tip of the 3D

blades, see Figure 35, indicate relatively strong radial variations along the suction surfaces.

Also, as in the previous example, there are significant differences between the LINFLUX and

LINFLO suction-surface pressure predictions at midspan, see Figure 36. Note, however, that

the 2D and 3D pressure responses on the pressure surface, where the steady Mach numbers

are lower, are in fairly good agreement. The unsteady pressure contours at midspan, as

predicted by the LINFLUX and LINFLO analyses, Figure 37, show qualitative agreement,

but there are significant differences along the blade suction surfaces and upstream of the

blade row.

As our final example, we will consider a (0,0) acoustic excitation arising from an adjacent

upstream stator consisting of 18 vanes, i.e., an acoustic excitation from upstream at w =

-Nvgt = 3.861 and a = 2_V(NB -- Nv)NB = 90 deg(ND = 6). In this case, two propagating

acoustic response disturbances persist far upstream of the blade row and one such disturbance

persists far downstream.

The axial eigenvalues of the modal acoustic disturbances in the far field of the 3D 10th

Standard Cascade, subjected to an unsteady excitation at aJ = 3.861 and a = 90 deg, are

shown in Figure 38. These results indicate that there are propagating acoustic disturbances,

at (m, #) = (0, 0) and (m, #) - (1, 0), in the far-upstream region, and at (m, #) - (0, 0) in the

far-downstream region. In the upstream region, the (0,0) and (1,0) downstream propagating

disturbances (excitations) occur at axial wave numbers, x_, of-2.212 and 1.567, respectively,

the corresponding upstream propagating (responses) disturbances at 5.647 and 5.308. The

remaining modes attenuate, with the (0,1) mode having the lowest attenuation coefficient,

/3 = 1.718. The radial mode shapes of the lowest-order modal acoustic disturbances are

similar, but not identical, to those shown in Figure 26. The (0,0) modes are almost constant,

but the (1,0) and (0,1) modes show significant radial variation. In the far downstream

region, the (0,0) excitation and response disturbances occur at _;e = 4.244 and _e = -1.865,

respectively, and the (0,1) response mode has an attenuation coefficient,/:7, of -1.170.

Unsteady pressure responses, as predicted using the LINFLUX and LINFLO analyses,

for the 3D 10th Standard Cascade subjected to a (0,0) acoustic excitation from upstream at

unit amplitude, a; = 3.861 and a = 90deg are given in Figures 39 through 41. The surface

pressure responses at the hub, midspan and tip (Figure 39) show a moderate variation along

the span, but, again, there are significant differences between the LINFLUX and LINFLO

predictions at midspan (Figure 40). The LINFLUX results indicate that the unit-amplitude

acoustic excitation from upstream produces propagating (0,0) and (1,0) acoustic response

disturbances at amplitudes of 0.676 and 0.099 far upstream and a propagating (0,0) response
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at amplitude 0.768far downstream.The correspondingLINFLO predictionsare0.481,0.240
and 0.779, respectively. Both analysesindicate that the remaining, attenuating, acoustic
responsedisturbancesattenuate to low amplitudesat the computational inflow and outflow
boundaries. Again, the computedin-phasepressurecontoursin Figure 41 arequalitatively
similar, but the LINFLUX H-meshsolution doesnot containthe finedetails of the unsteady
pressurefields, betweenthe bladesand upstreamof the bladerow, that arepredicted by the
LINFLO composite-meshcalculation.

6.3 Discussion

At this point, we havepresentednumerousresults for unsteadyflows through a helical
fan and a three-dimensionalversion of the 10th Standard Cascade.These results pertain
to acoustically dominated unsteadyflows in which the unsteadyfluctuations are causedby
prescribedbladevibrations or by prescribedacousticdisturbancesat inlet or exit. They were
determinedusingthe 3DLINFLUX analysisand the 2D Smith [Smi72]and LINFLO [Ver93]
analyses. LINFLUX is basedon an implicit, flux-split, finite-volume schemefor solving
the linearizedEuler equationsin the nearfield, which typically extendsfrom oneaxial chord
upstreamto oneaxial chorddownstreamof the bladerow, andeigenanalysesfor the unsteady
perturbations of fully-developed, axisymmetric, swirling mean flows in the far upstream
and far downstreamregions. For the unsteadyflows consideredherein, the eigenanalyses
havebeenusedto determinethe lowest-ordermodal acousticdisturbances,the higher-order
disturbances are assumedto be of negligible amplitude at the computational inflow and
outflow boundaries, and the remaining part of the unsteady perturbation, consisting of
convectedand nearly convecteddisturbances,issimply convectedout ofthe near-fielddomain
through the computational outflow boundary.

Numerical Results

The numerical results indicate that the far-field eigenanalysis is capable of providing rea-

sonable solutions for the axial eigenvalues and the radial pressure modes (see, e.g., Figures 5,

6, 25, and 26) of the acoustic excitations and responses that can exist far upstream and far

downstream of a blade row. In particular, we have tested the numerical eigensolutions against

analytical predictions for uniform absolute mean flows, and found excellent agreement. At

this point, we have not applied the eigenanalysis to predict the axial eigenvalues and radial

eigenmodes associated with nearly convected disturbances. The behavior of such distur-

bances is not well understood at present, as far-field eigenanalyses for non-uniform mean

flows have become available only recently. It will be necessary to provide accurate numerical

representations of nearly-convected, predominantly vortical, disturbances to predict the un-

steady aerodynamic responses associated with wake/blade-row interactions. Therefore, this

issue will be addressed in detail in the next phase of our LINFLUX development effort.

The LINFLUX local surface response predictions, i.e., a;c vs _ and [p_ vs _ (cf. Figures 7-

9), for the helical fan undergoing pure torsional vibrations and pure bending vibrations show

reasonable radial trends, and the predictions at blade midspan are in very good agreement

with those based on the classical analysis of Smith. Similarly, the LINFLUX global work

per cycle predictions, i.e., Wc vs a (Figure 10) are in very good agreement with predictions

based on the Smith analysis.
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The local surfaceresponses,predictedusing the LINFLUX analysis, for acousticexcita-
tions from upstreamand downstream(Figures12,13, 15,16and 19-22)alsoshowreasonable
radial trends and, for the acousticexcitationsat w = 3.332 and a = 90 deg (No = 6), good

agreement at midspan with the predictions of the 2D LINFLO analysis. The LINFLUX solu-

tions for highly two-dimensional acoustic excitations at w = 3.887 and a = 45 deg (ND = 3)

show strong radial variations, particularly for the excitation from downstream, therefore,

as might be expected, the LINFLUX results at midspan differ from those of the LINFLO

analysis. The unsteady pressure contours at midspan (Figures 14 and 17), predicted by the

LINFLUX and LINFLO analyses, for the acoustic excitations at w = 3.332 and a = 90 deg,

are in very good agreement, but the two analyses give slightly different predictions for the

amplitudes of the far-upstream propagating acoustic response disturbances at m = 0. The

LINFLUX pressure contours show no spurious acoustic reflections at the computational in-

flow and outflow boundaries; thereby, indicating a successful coupling of the LINFLUX near-

and far-field solution procedures.

The TURBO predictions for the zeroth-order or steady relative flow at -'--o¢]_abs : M_,_o_ :

0.4015 through the 3D 10th Standard Cascade shows moderate variations in the blade-

surface Mach numbers with radius, but only small variations in blade loading (Figure 23).

In addition, the 3D Euler predictions for the surface Mach numbers at blade midspan are in

close agreement with 2D full-potential predictions. The 3D 10th Standard Cascade operates

in a uniform, axial, absolute, mean inlet flow, but, because of steady blade loading, the mean

flow far downstream of the blade row (Figure 24) has swirl and axial shear.

The LINFLUX local unsteady response, i.e., wc vs (, predictions (Figures 27-29) for

the 3D 10th Standard Cascade, undergoing pure torsional and pure bending vibrations at

a; -- 1, show small variations with radius and, for the most part, the results at midspan,

are in good agreement with the 2D LINFLO predictions. However, the LINFLUX and

LINFLO, local work per cycle results for a superresonant bending vibration at a = 90deg

show significant differences along the blade suction surface. We suspect that these differences

are due to an inadequate resolution, by LINFLUX, of the local, high wave number, upstream

traveling, acoustic response disturbances that occur at high-subsonic, steady, Mach numbers.

The LINFLUX and LINFLO global work per cycle, Wc vs a, predictions for torsional and'

bending vibrations (Figure 30) are in very good agreement. However, the global results for

the bending vibrations must be interpreted with some caution, as the local responses differ

along blade suction surfaces at the interblade phase angles at which a propagating acoustic

response disturbance exists far upstream of the blade row and all other acoustic responses

attenuate.

The LINFLUX unsteady surface pressure predictions for the 3D 10th Standard Cascade,

subjected to acoustic excitations from upstream (Figures 32, 34 39 and 40) or downstream

(Figures 35 and 36), also show reasonable spanwise trends, but the LINFLUX and LINFLO

predictions along the suction surface at midspan show substantial differences over the forward

half of the blade. However, the unsteady pressure distributions on the lower or pressure

surfaces of the blades, where steady Mach numbers are lower, are in good agreement. The

LINFLUX and LINFLO predictions for the amplitudes of the upstream propagating acoustic

response waves also show significant differences. We believe that the differences on the

suction surface and far upstream stem from performing the LINFLUX calculations on an

H-mesh that is too sparse to capture the upstream traveling acoustic response waves, that
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occurnear the suction surfacesof blades,in regionsin which steadyMachnumbersareclose
to one.

The unsteadypressurecontoursat midspan,aspredictedby the LINFLUX and LINFLO
analyses,for the flows through the 3D 10th StandardCascadedriven by acousticexcitations
from upstream (Figure 34) and downstream(Figure 37) are in qualitative agreement,but
significant quantitative differencesoccur in the vicinities of the blade leading edges,along
the blade suction surfacesand upstream of the blade row. Thesedifferencessuggestthe
regions in which the computational mesh, usedfor the LINFLUX calculations, should be
refined.

Mesh Resolution Study

We have performed a brief study on an unsteady flow through the 2D 10th Standard Cas-

cade to test whether LINFLUX results will approach those of LINFLO, if a re-distributed

and more refined mesh is used for the LINFLUX calculations. For this purpose, we con-

sider the unsteady flow excited by a unit-amplitude acoustic excitation from upstream at

= 3.861 and a = 90 deg, and apply the 2D LINFLUX [MV95, VMK95] and LINFLO codes

to predict the unsteady surface pressure distributions. The LINFLO results are the same

as those shown in Figure 40. The 2D LINFLUX results, determined on a 141 × 41 grid

which is similar to that used at midspan for the 3D LINFLUX calculations, agree closely

with the midspan, 3D LINFLUX predictions shown in Figure 40. The 2D LINFLUX cal-

culations were then performed on a re-distributed 141 × 41 grid in which more axial lines

were placed upstream and over the forward half of the blade row. Following this calculation,

2D LINFLUX calculations were performed on refined meshes that were 1.5 and 2.0 times as

dense as the re-distributed 141 × 41 mesh.

The results are shown in Figure 42, where it can be seen that the re-distribution of the

original 141 × 41 mesh leads to LINFLUX surface-pressure predictions that are in better

agreement with the corresponding LINFLO results. Moreover, as the mesh density is in-

creased, the LINFLUX predictions approach those of LINFLO. In our future studies, similar

grid re-distribution and density studies will be performed with the 3D LINFLUX analysis

in an effort to determine the grid requirements for accurately resolving three-dimensional

unsteady phenomena. At present, it appears that relatively large memory resources and

CPU times will be required to achieve accurate acoustic response predictions using the 3D

LINFLUX analysis.

Based on the numerical results presented in this report, we believe that the near- and

far-field numerical algorithms used in the LINFLUX code are working properly and these

algorithms have been successfully coupled. Also, it appears that the LINFLUX analysis is

capable of providing accurate aerodynamic response information for unsteady flows driven

by prescribed blade motions and/or acoustic excitations, provided that the computational

grids used are sufficiently dense and properly distributed. LINFLUX mesh requirements

should not impose any serious difficulties for blade flutter applications, but for the high

frequency unsteady flows, associated with forced blade vibrations and blade-row noise gen-

eration, these requirements will be rather stringent. Hence, strategies for reducing mesh size,

e.g., higher-order numerical approximations, both in the field and at blade surfaces, and/or

the construction of a parallel version of LINFLUX may have to be considered.
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7. Concluding Remarks

The LINFLUX, linearizedunsteadyaerodynamicanalysis is beingdevelopedfor turbo-
machinery aeroelasticand aeroacousticdesignapplications. This analysis is basedon the
Euler equationsof fluid motion, a near-field,implicit, flux-split, finite-volume,analysis,and a
far-field eigenanalysisfor unsteadyperturbations of afully-developed,axisymmetric swirling
mean flow. The near-field numerical model is basedon the schemeused in the nonlinear
unsteady analysis, TURBO [JHW92], and the far-field eigenanalysis,which is coupled to
the near-field finite-volume analysisat computational inflow and outflow boundaries,allows
incoming external aerodynamicexcitations to be prescribed,and acousticresponsedistur-
bancesto pass through thesecomputational boundarieswithout spurious reflections. To
date, this theoretical effort hasbeenfocusedon formulating the linearizedinviscid unsteady
aerodynamicequationsand the near- and far-field solution procedures,and on implement-
ing thesemodels, first, into a two-dimensionalcode [VMK95, MV95], and then, under the
presenteffort, into a three-dimensional,linearized,unsteadyaerodynamiccode.

Under the presenteffort, wehaveappliedthe 3D LINFLUX analysisto predict unsteady
subsonicflows through a helical fan and through a "real" blade configuration, i.e., a three
dimensional versionof the 10th StandardCascadeConfiguration. We have consideredun-
steady flows excited by prescribedblade vibrations or by prescribedacoustic disturbances
at inlet or exit that travel toward the blade row. In each casea highly two-dimensional
excitation hasbeenimposed,sothat the LINFLUX predictions could be usefully compared
and validated against predictions basedon previous two-dimensionalanalyses.

The numerical results indicate that the current versionof the 3D LINFLUX code is ca-
pable of providing accurate aerodynamicresponseinformation for unsteadysubsonicflows,
provided that the grids employedhave a sufficient overall density and local clusterings in
regionsof high flow gradients. In particular, the numerical results indicate that the axial
eigenvaluesand radial eigenmodesof far-field acousticdisturbancescanbe accuratelyrepre-
sented,and that the 3D blade-surface,responsepredictions showreasonableradial trends.
Moreover,for the helical fan, the LINFLUX results at midspanare in very goodagreement
with those basedon the Smith [Smi72]and LINFLO [Ver93]analyses.The LINFLUX and
LINFLO resultsat midspanof the 3D 10thStandard Cascadeare in goodqualitative agree-
ment, but in somecasessignificant quantitative differencesoccur. The latter appearalong
the suction surfacesof the blades,wheresteadyMachnumbersarecloseto one,and upstream
of the blade row. The presentevidencesuggeststhat the quantitative differencesbetween
the LINFLUX and LINFLO results can be eliminated if the meshesusedin the LINFLUX
calculationsare of sufficientdensity and the grid linesare properly distributed.

Basedon the numericalresultspresentedin this report, it appearsthat the near-and far-
field numerical algorithms,developedfor the LINFLUX code,areworkingproperly and that
thesealgorithms havebeensuccessfullycoupled.Also, the 3D LINFLUX analysiscanyield
usefulresponseinformation for acoustically-dominatedunsteadyflows, i.e., flowsexcited by
blade vibrations or acousticdisturbances. However, the mesh requirementsfor accurately
resolvingsuch flows must be better understood. The requirementsfor flutter applications,
for which reducedfrequenciesare typically of order one, can be readily met, but those for
forcedvibration and aeroacousticresponsestudies,in which reducedfrequencieson the order
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of 5 to 50 must be considered,may imposeseriousconstraints on availablecomputational
resources.

A number of computational strategiescould be investigatedto improvethe performance
of a TURBO/LINFLUX unsteadyaerodynamiccalculation. In particular, a rotating-frame

version of the TURBO analysis could be constructed to allow more efficient predictions of

nonlinear, steady background flows. Also, second-order accurate, surface boundary condi-

tions could be installed to reduce the time required to achieve converged low-loss, steady

solutions. In addition, strategies for reducing the mesh densities required to achieve accurate

LINFLUX unsteady flows predictions should be investigated. Such strategies might entail

the development of second-order accurate blade-surface conditions, fourth-order accurate

field approximations, and the use of composite H-C meshes. A composite mesh capability

would also be useful in the TURBO analysis for reducing the numerical losses that occur

at the blade surfaces. Finally, because of the high frequencies involved, a parallel version

of LINFLUX should be considered for forced blade vibration and blade-row aeroacoustic

response studies.

In the next phase of our LINFLUX development effort, we will focus on the unsteady

flows associated with wake/blade-row interactions. For such applications, the wakes must be

modeled as a superposition of convected and nearly-convected disturbances, which are im-

posed at the computational inflow boundary. Their passage through the blade row and into

the far-downstream region is determined by the LINFLUX, near- and downstream far-field

analyses. Thus, for swirling mean flows, the present far-field eigenanalysis must be extended

to determine nearly-convected modal disturbances, eliminate spurious or non-physical dis-

turbances, and provide accurate descriptions of the axial and radial behaviors of the retained

disturbances. Following this, the LINFLUX predictions for the unsteady responses to wake-

type excitations must be determined and evaluated. Based on our earlier investigations

with the 2D LINFLUX analysis [MV95, VMK95], we anticipate that higher-order bound-

ary conditions will be needed to accurately model unsteady vortical behaviors near blade

surfaces.

To date, we have focused on demonstrating and validating the 3D LINFLUX code for

unsteady subsonic flows. This code can also be applied to predict unsteady transonic flows.

But again, based on our earlier investigations with the 2D LINFLUX code [MV95, VMK95],

improvements in shock modeling will be required, so that LINFLUX and its nonlinear coun-

terpart, TURBO, which has excellent shock resolution capabilities, will provide consistent

response information in the vicinities of moving shocks.
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Figure 1: Rotating axial compressorblade row operating within an annular duct.
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Figure 2: 3D Tenth Standard Configuration undergoing an exaggerated torsional motion

(ah,_b = 0 deg, atip = 45 deg). The rotor consists of 24 NACA 5506 airfoils staggered at 45

deg. The nodal diameter of the blade motion is 6, which results in an interblade phase angle

of 90 deg. The outer casing has been eliminated from the figure for clarity.
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Figure 3: LINFLUX computational grid at midspan for the helical fan.
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Figure 12: Unsteady surface pressure distributions due to the interaction of an acoustic

excitation from upstream [PA,_f = (1, 0), w = 3.332 and a = 90 deg] with the helical fan.
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90 deg] with the helical fan.
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Figure 17: Contours of the in-phase component of the unsteady pressure at midspan due to
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90 deg] with the helical fan.
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Figure 20: Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of an acoustic excitation from upstream [PA,Ref = (1, 0), w = 3.887 and a =

45 deg], with the helical fan.
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Figure 21: Unsteady surface pressure distributions at r/rD -- 0.8 (-- -- --), r/rD = 0.9 (--)

and r/rD -- 1.0 (.... ), due to the interaction of an acoustic excitation from downstream
+

[PA,_f = (1,0), w = 3.887 and a = 45deg], with the helical fan.
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Figure 22: Unsteady surface pressure distributions at midspan (r/rD -- 0.9) due to the
interaction of an acoustic excitation from downstream =F _[PA,Ref -- (1, 0), w = 3.887 and a ----

45 deg], with the helical fan.
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Figure 24: Relative frame steady/low properties far upstream and far downstream of the3D 10th Standard Cascade (Ma_ = 0.4015, /_] = 0.2145).
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Figure 25: Axial eigenvalues, X = fl + iae, for three circumferential (m = -1, 0, 1) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for an unsteady flow at w - 1.0 and ND = 6.
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Figure 28: Local work per cycle distributions at midspan, as predicted using the 3D LIN-

FLUX (--) and the 2D LINFLO (- - -) analyses, for the 3D 10th Standard Cascade

undergoing torsional blade vibrations about midchord at _ = 1.
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Figure 31: Axial eigenvalues, X =/3 + i_, for five circumferential (m = -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for unsteady flow at w = 3.218 and No : 9.
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Figure 32: Unsteady surface pressure distributions due to the interaction of an acoustic

excitation from upstream _A,Re_ = (1, 0), w = 3.218 and a = 135 deg] with the 3D 10th
Standard Cascade.
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Figure 33: Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of an acoustic excitation from upstream [PA,P_ = (1, 0), w = 3.218, a = 135 deg]
with the 3D 10th Standard Cascade.
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Figure 34: Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of an acoustic excitation from upstream [PA,Ref ----(1, 0), w = 3.218, a =

135 deg] with the 3D 10th Standard Cascade.
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Figure 36: Unsteady surface pressure distributions at midspan due to the interaction of an

acoustic excitation from downstream [PA,Ref+---- (1, 0), W = 3.218, a ----135 deg] with the 3D
10th Standard Cascade.
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Figure 37: Contours of the in-phase component of the unsteady pressure at midspan due to

the interaction of an acoustic excitation from downstream [P+,ae_ -- (1,0), w = 3.218, (7 =

135 deg] with the 3D 10th Standard Cascade.

79



8.0

6.0

4.0 ¸

2.0-

0.0 °

-2.0-

-4J

Inlet, ND = 6

2,2 2,1

[] m

2,0

[]

Upstream

0,0_ propagating :0 2,1 2,2

[] []

1,2

[]

i,i

[]

0,2 0,1 0,1 0,2

[] 0,[] []

1:,0

-1,2 -1,1 -1,0 t: -1,0 -1,1 -1,2

.................. _ ....... O---O ......... --/-i ............. _- -_ ....... [] ..................

/
-2,2 -2,0 Downstream /i -2,0 -2,2

[] [] [] propagating iN. 0,0 [] [] []
-2,1 "0 -2,1

Downstream Upstream

decaying "*--- _ decaying

6.0"

4.0 °

2.0'

0.0'

Exit,ND = 6 Downstream Upstream

decaying "*'-- ----*"
0,0 decaying

0 _ Upstream

2,0 propagating 2,0
2,1 [] [] 2,1
[] Ill

I_2_ lfl 1_0 . 1,0 i_I. IL2" _
..:2 ............ r_ ..... r_---- : [] ,., -l.J ................................ i-m.......... _._............ &,_'_

]
0,2[] 0,1[] ' 00,1 [] 0,2

-2,2 -2,0 [] [] [] : [] [] El -2,0 -2,2
-1,2 -I,I -I,0 ! -I,0 -I,I -1,2

[] [] [] ', [] [] []

-2,1 i -2,1

Downstream {J,0

propagating -..I.,
-2=016.0 - 1"2.0 -_.0 -4.0 0.0 4:0 8:0 12.0 16.0

f_

Figure 38: Axial eigenvalues, X = f_ + in_, for five circumferential (m = -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for an unsteady flow at w = 3.861 and No = 6.
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Figure 39: Unsteady surface pressure distributions due to the interaction of an acoustic

excitation from upstream [PA,_f = (1,0), w = 3.861 and a = 90deg] with the 3D 10th
Standard Cascade.
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Figure 40: Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of an acoustic excitation from upstream [PA,Ref = (1, 0), W = 3.861 and cr =

90 deg] with the 3D 10th Standard Cascade.
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Figure 41: Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of an acoustic excitation from upstream [PA,aef = (1, 0), W = 3.861, a =
90 deg] with the 3D 10th Standard Cascade.
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Figure 42: Unsteady surface pressure distributions, as predicted by the 2D LINFLUX and

LINFLO analyses, due to the interaction of an acoustic excitation from upstream [PA =

(1, 0), co = 3.861, a = 90 deg] with the 2D 10th Standard Cascade. The LINFLUX solutions

were determined on 141 x 41 (a), 211 x 61 (b), and 281 x 81 (c) H-meshes.
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